import json
import numpy as np
import os
import pandas as pd
import urllib2
# connect to poloniex's API
url = 'https://poloniex.com/public?command=returnChartData¤cyPair=USDT_BTC&start=1356998100&end=9999999999&period=300'
# parse json returned from the API to Pandas DF
openUrl = urllib2.urlopen(url)
r = openUrl.read()
openUrl.close()
d = json.loads(r.decode())
df = pd.DataFrame(d)
original_columns=[u'close', u'date', u'high', u'low', u'open']
new_columns = ['Close','Timestamp','High','Low','Open']
df = df.loc[:,original_columns]
df.columns = new_columns
df.to_csv('data/bitcoin2015to2017.csv',index=None)
import numpy as np
import pandas as pd
class PastSampler:
'''
Forms training samples for predicting future values from past value
'''
def __init__(self, N, K, sliding_window = True):
'''
Predict K future sample using N previous samples
'''
self.K = K
self.N = N
self.sliding_window = sliding_window
def transform(self, A):
M = self.N + self.K #Number of samples per row (sample + target)
#indexes
if self.sliding_window:
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1)
else:
if A.shape[0]%M == 0:
I = np.arange(M)+np.arange(0,A.shape[0],M).reshape(-1,1)
else:
I = np.arange(M)+np.arange(0,A.shape[0] -M,M).reshape(-1,1)
B = A[I].reshape(-1, M * A.shape[1], A.shape[2])
ci = self.N * A.shape[1] #Number of features per sample
return B[:, :ci], B[:, ci:] #Sample matrix, Target matrix
#data file path
dfp = 'data/bitcoin2015to2017.csv'
#Columns of price data to use
columns = ['Close']
df = pd.read_csv(dfp)
time_stamps = df['Timestamp']
df = df.loc[:,columns]
original_df = pd.read_csv(dfp).loc[:,columns]
file_name='bitcoin2015to2017_close.h5'
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
# normalization
for c in columns:
df[c] = scaler.fit_transform(df[c].values.reshape(-1,1))
#Features are input sample dimensions(channels)
A = np.array(df)[:,None,:]
original_A = np.array(original_df)[:,None,:]
time_stamps = np.array(time_stamps)[:,None,None]
#Make samples of temporal sequences of pricing data (channel)
NPS, NFS = 256, 16 #Number of past and future samples
ps = PastSampler(NPS, NFS, sliding_window=False)
B, Y = ps.transform(A)
input_times, output_times = ps.transform(time_stamps)
original_B, original_Y = ps.transform(original_A)
import h5py
with h5py.File(file_name, 'w') as f:
f.create_dataset("inputs", data = B)
f.create_dataset('outputs', data = Y)
f.create_dataset("input_times", data = input_times)
f.create_dataset('output_times', data = output_times)
f.create_dataset("original_datas", data=np.array(original_df))
f.create_dataset('original_inputs',data=original_B)
f.create_dataset('original_outputs',data=original_Y)
CNN插图(来自:http://cs231n.github.io/convolutional-networks/)
import pandas as pd
import numpy as numpy
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import h5py
import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
# Make the program use only one GPU
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File(''.join(['bitcoin2015to2017_close.h5']), 'r') as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
output_file_name='bitcoin2015to2017_close_CNN_2_relu'
step_size = datas.shape[1]
batch_size= 8
nb_features = datas.shape[2]
epochs = 100
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:]
#build model
# 2 layers
model = Sequential()
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
model.add(Dropout(0.5))
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
'''
# 3 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
# 4 layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
'''
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint('weights/'+output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] ='1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
model = Sequential()
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
model.add(Dropout(0.5))
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
model.compile(loss='mse', optimizer='adam')
输出时间步=(输入时间步-内核大小)/步进+ 1
model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint('weights/'+output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')]
LSTM插图(来源:http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
import pandas as pd
import numpy as numpy
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten,Reshape
from keras.layers import Conv1D, MaxPooling1D
from keras.utils import np_utils
from keras.layers import LSTM, LeakyReLU
from keras.callbacks import CSVLogger, ModelCheckpoint
import h5py
import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File(''.join(['bitcoin2015to2017_close.h5']), 'r') as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
step_size = datas.shape[1]
units= 50
second_units = 30
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
output_size=16
output_file_name='bitcoin2015to2017_close_LSTM_1_tanh_leaky_'
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:,0]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:,0]
#build model
model = Sequential()
model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint('weights/'+output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
model = Sequential()
model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss='mse', optimizer='adam')
GRU插图(来源:http://www.jackdermody.net/brightwire/article/GRU_Recurrent_Neural_Networks)
import pandas as pd
import numpy as numpy
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten,Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU
from keras.utils import np_utils
from keras.layers import GRU,CuDNNGRU
from keras.callbacks import CSVLogger, ModelCheckpoint
import h5py
import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File(''.join(['bitcoin2015to2017_close.h5']), 'r') as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
output_file_name='bitcoin2015to2017_close_GRU_1_tanh_relu_'
step_size = datas.shape[1]
units= 50
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
output_size=16
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:,0]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:,0]
#build model
model = Sequential()
model.add(GRU(units=units, input_shape=(step_size,nb_features),return_sequences=False))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(output_size))
model.add(Activation('relu'))
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint('weights/'+output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
model.add(GRU(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
from keras import applications
from keras.models import Sequential
from keras.models import Model
from keras.layers import Dropout, Flatten, Dense, Activation
from keras.callbacks import CSVLogger
import tensorflow as tf
from scipy.ndimage import imread
import numpy as np
import random
from keras.layers import LSTM
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU
from keras import backend as K
import keras
from keras.callbacks import CSVLogger, ModelCheckpoint
from keras.backend.tensorflow_backend import set_session
from keras import optimizers
import h5py
from sklearn.preprocessing import MinMaxScaler
import os
import pandas as pd
# import matplotlib
import matplotlib.pyplot as plt
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
with h5py.File(''.join(['bitcoin2015to2017_close.h5']), 'r') as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
input_times = hf['input_times'].value
output_times = hf['output_times'].value
original_inputs = hf['original_inputs'].value
original_outputs = hf['original_outputs'].value
original_datas = hf['original_datas'].value
scaler=MinMaxScaler()
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:,:]
training_labels = labels[:training_size,:,:]
validation_datas = datas[training_size:,:,:]
validation_labels = labels[training_size:,:,:]
validation_original_outputs = original_outputs[training_size:,:,:]
validation_original_inputs = original_inputs[training_size:,:,:]
validation_input_times = input_times[training_size:,:,:]
validation_output_times = output_times[training_size:,:,:]
ground_true = np.append(validation_original_inputs,validation_original_outputs, axis=1)
ground_true_times = np.append(validation_input_times,validation_output_times, axis=1)
step_size = datas.shape[1]
batch_size= 8
nb_features = datas.shape[2]
model = Sequential()
# 2 layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
# model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
model.load_weights('weights/bitcoin2015to2017_close_CNN_2_relu-44-0.00030.hdf5')
model.compile(loss='mse', optimizer='adam')
predicted = model.predict(validation_datas)
predicted_inverted = []
for i in range(original_datas.shape[1]):
scaler.fit(original_datas[:,i].reshape(-1,1))
predicted_inverted.append(scaler.inverse_transform(predicted[:,:,i]))
print np.array(predicted_inverted).shape
#get only the close data
ground_true = ground_true[:,:,0].reshape(-1)
ground_true_times = ground_true_times.reshape(-1)
ground_true_times = pd.to_datetime(ground_true_times, unit='s')
# since we are appending in the first dimension
predicted_inverted = np.array(predicted_inverted)[0,:,:].reshape(-1)
print np.array(predicted_inverted).shape
validation_output_times = pd.to_datetime(validation_output_times.reshape(-1), unit='s')
ground_true_df = pd.DataFrame()
ground_true_df['times'] = ground_true_times
ground_true_df['value'] = ground_true
prediction_df = pd.DataFrame()
prediction_df['times'] = validation_output_times
prediction_df['value'] = predicted_inverted
prediction_df = prediction_df.loc[(prediction_df["times"].dt.year == 2017 )&(prediction_df["times"].dt.month > 7 ),: ]
ground_true_df = ground_true_df.loc[(ground_true_df["times"].dt.year == 2017 )&(ground_true_df["times"].dt.month > 7 ),:]
plt.figure(figsize=(20,10))
plt.plot(ground_true_df.times,ground_true_df.value, label = 'Actual')
plt.plot(prediction_df.times,prediction_df.value,'ro', label='Predicted')
plt.legend(loc='upper left')
plt.show()
比特币价格预测的最佳结果图
不同模型的预测结果
LSTM用tanh和Leaky ReLu作为激活函数
3层CNN用Leaky ReLu作为激活函数
def fit_lstm(reg):
global training_datas, training_labels, batch_size, epochs,step_size,nb_features, units
model = Sequential()
model.add(CuDNNLSTM(units=units, bias_regularizer=reg, input_shape=(step_size,nb_features),return_sequences=False))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels, batch_size=batch_size, epochs = epochs, verbose=0)
return model
def experiment(validation_datas,validation_labels,original_datas,ground_true,ground_true_times,validation_original_outputs, validation_output_times, nb_repeat, reg):
error_scores = list()
#get only the close data
ground_true = ground_true[:,:,0].reshape(-1)
ground_true_times = ground_true_times.reshape(-1)
ground_true_times = pd.to_datetime(ground_true_times, unit='s')
validation_output_times = pd.to_datetime(validation_output_times.reshape(-1), unit='s')
for i in range(nb_repeat):
model = fit_lstm(reg)
predicted = model.predict(validation_datas)
predicted_inverted = []
scaler.fit(original_datas[:,0].reshape(-1,1))
predicted_inverted.append(scaler.inverse_transform(predicted))
# since we are appending in the first dimension
predicted_inverted = np.array(predicted_inverted)[0,:,:].reshape(-1)
error_scores.append(mean_squared_error(validation_original_outputs[:,:,0].reshape(-1),predicted_inverted))
return error_scores
regs = [regularizers.l1(0),regularizers.l1(0.1), regularizers.l1(0.01), regularizers.l1(0.001), regularizers.l1(0.0001),regularizers.l2(0.1), regularizers.l2(0.01), regularizers.l2(0.001), regularizers.l2(0.0001)]
nb_repeat = 30
results = pd.DataFrame()
for reg in regs:
name = ('l1 %.4f,l2 %.4f' % (reg.l1, reg.l2))
print "Training "+ str(name)
results[name] = experiment(validation_datas,validation_labels,original_datas,ground_true,ground_true_times,validation_original_outputs, validation_output_times, nb_repeat,reg)
results.describe().to_csv('result/lstm_bias_reg.csv')
results.describe()
运行偏差调节器的结果
results.describe().boxplot()
plt.show()