加利福尼亚大学开发模型,可减少AI数据集的性别偏见
2018年09月10日 由 浅浅 发表
590811
0
词嵌入是一种将单词和短语映射到实数向量上的语言建模技术,是自然语言处理的基础部分。这就是机器学习模型如何“学习”语境相似性和词语接近的重要性,以及它们如何最终从文本中提取意义。只有一个问题:数据集往往表现出性别刻板印象和其他偏见。可以预见的是,在这些数据集上接受训练的模型会发现甚至放大这些偏见。
为了解决这个问题,加利福尼亚大学的研究人员开发了一种新颖的训练解决方案,即“保留单词向量中的性别信息”,同时“强迫其他方面不受性别影响。”他们在一篇论文“Learning Gender-Neutral Word Embeddings”中描述了他们的模型。
“研究表明......从人类生成的语料库中学习的机器学习模型往往容易出现社会偏见,例如性别刻板印象,”该团队写道,“例如,'程序员'这个词在定义上对性别不敏感,但是在新闻语料库上训练的嵌入模型将“程序员”与“男性”更接近“男性”而非“女性”。这种偏见会严重影响下游应用。
他们的学习方案,他们称之为Gender-Neutral Global Vectors(GN-GloVe),识别性别中性词,同时学习词向量。该团队声称它优于以前的方法,因为它可以应用于任何语言,不会从单词中删除任何性别信息,并排除单词被错误分类并影响模型性能的可能性。
与GloVe和Hard-GloVe(两种常用模型)相比,GN-GloVe对新注释的数据集中的性别刻板词非常敏感。虽然GloVe的定型词如“医生”和“护士”,但GN-GloVe却没有。此外,它总体上表现出较少的偏见,在研究人员的测试中,GloVe倾向于将职业与特定的性别联系在一起,GN-GloVe的偏差减少了35%。
在未来,该团队计划扩展该方法以模拟其他单词属性,例如情绪。
论文:arxiv.org/pdf/1809.01496.pdf
更多AI数据集请点击“这里”下载:
AI数据集