西澳大利亚大学研究者训练AI系统识别太空中的星系
2018年11月05日 由 浅浅 发表
240681
0
西澳大利亚大学的研究人员开发了一种深度学习系统,可以识别太空中的星系。这个名为ClaRAN的系统可以扫描射电望远镜拍摄的图像,并发现从黑洞发射强大射电喷流的射电星系。
来自西澳大利亚大学的天文学家Ivy Wong博士和该研究的作者表示,在大多数星系的中心都会发现黑洞,“这些超大质量的黑洞偶尔可以用射电望远镜拍摄喷气式飞机,随着时间的推移,喷气式飞机可以从它们的主星系延伸很长的路程,这使得传统的计算机程序很难弄清星系的位置。这就是我们要教ClaRAN做的事情。“
这项工作使用基于快速区域的卷积神经网络(更快的R-CNN),由微软和Facebook研究人员的研究开发为基础。该团队表示,该计划经过彻底改革和训练,可以识别星系而不是人。
ClaRAN观察了超过500个不同角度的射电星系数据视图,并进行检测和分类。在扫描了不同的视图后,ClaRAN还考虑了红外望远镜的数据来改进其预测,给出了射电星系喷射系统的最终检测和分类结果。
团队使用NVIDIA Tesla GPU和cuDNN -accelerated TensorFlow深度学习框架,通过上千种世界坐标系对齐的射电和红外线图像训练卷积神经网络。然后神经网络将它们分为六个形态类别之一。
Wong博士表示,传统的计算机算法可识别大约90%的来源。“由于其扩展结构的复杂性,仍有10%或700万难以识别的星系必须被人类所关注。如果ClaRAN将需要视觉分类的光源数量减少到百分之一,这意味着我们有更多的时间来观察新星系。”
通过结合不同望远镜的数据,ClaRAN在其检测和分类中的置信度水平得以提高。如检测框上方的数字所示,1.00的置信度表示ClaRAN非常确信所检测到的源是一个射电星系喷射系统,并且已经正确地对其进行了分类。左边是一个射电星系喷射系统,ClaRAN只用射电望远镜的数据就能探测到。ClaRAN不确定它在这里看到了什么,给出了两个预测,一个覆盖整个系统,为0.53的低置信度,一个覆盖顶级喷射,只有0.67的置信度。右边是同一个星系,但红外望远镜数据重叠。随着红外望远镜数据的加入,ClaRAN对检测的信心增加到最高值1.0,而ClaRAN现在将整个系统包含在其唯一的预测中。
代码:github.com/chenwuperth/rgz_rcnn
论文:academic.oup.com/mnras/article/482/1/1211/5142869