如何利用图卷积网络对图进行深度学习(上)

2020年01月26日 由 sunlei 发表 103005 0
基于图的机器学习是一项困难的任务,因为图的结构非常复杂,而且信息量也很大。这篇文章是关于如何用图卷积网络(GCNs)对图进行深度学习的系列文章中的第一篇,GCNs是一种强大的神经网络,旨在直接处理图并利用其结构信息。

在这篇文章中,我将介绍GCNs,并举例说明如何通过GCN的隐藏层传播信息。我们将看到GCN如何聚合来自前几层的信息,以及该机制如何生成图中节点的有用特征表示。

什么是图卷积网络?


GCNs是一种非常强大的用于图形机器学习的神经网络体系结构。事实上,它们非常强大,即使是随机启动的2层GCN也可以生成网络中节点的有用特征表示。下图说明了由这种GCN产生的网络中每个节点的二维表示。请注意,即使没有任何训练,网络中节点的相对接近度也保留在二维表示中。



更正式地说,图卷积网络(GCN)是一种对图进行运算的神经网络。给定一个图G=(V,E),GCN作为输入

  • 一个输入特征矩阵N×F⁰特征矩阵X,其中N是节点数,F⁰是每个节点的输入特征数以及

  • 图结构的N×N矩阵表示,如[1]的邻接矩阵A


因此,GCN中的隐藏层可以被写为Hⁱ= f (Hⁱ⁻¹,A)),其中 H⁰= X和f是一个传播[1]。每一层Hⁱ对应于一个N×Fⁱ特性矩阵,其中每一行是一个节点的特征表示。在每一层,使用传播规则f将这些特征聚合起来形成下一层的特征。这样,特征在每一层变得越来越抽象。在这个框架中,GCN的变体只在传播规则f[1]的选择上有所不同。

一个简单的传播规则


最简单的传播规则之一是[1]:

f(Hⁱ,A)=σ(AHⁱWⁱ)


其中Wⁱ是第i层的权重矩阵,σ是非线性激活函数,如ReLU函数。权重矩阵的维数为Fⁱ × Fⁱ⁺¹;换句话说,权重矩阵的第二维度的大小决定了下一层的特征数。如果您熟悉卷积神经网络,则此操作类似于过滤操作,因为这些权重在图中的节点之间共享。

简化


让我们从最简单的层次来研究传播规则。假如

i=1,s.t.f是输入特征矩阵的函数,

σ是恒等式函数,并且

选择重量s.t.AH⁰W⁰=AXW⁰=AX。

一个简单的图形示例


作为一个简单的例子,我们将使用下图:

[caption id="attachment_49981" align="aligncenter" width="432"] 一个简单的有向图。[/caption]

下面是它的numpy邻接矩阵表示。
A = np.matrix([
[0, 1, 0, 0],
[0, 0, 1, 1],
[0, 1, 0, 0],
[1, 0, 1, 0]],
dtype=float
)

接下来,我们需要功能!我们根据节点的索引为每个节点生成2个整数特征。这样便于以后手动确认矩阵计算。
In [3]: X = np.matrix([
[i, -i]
for i in range(A.shape[0])
], dtype=float)
X

Out[3]: matrix([
[ 0., 0.],
[ 1., -1.],
[ 2., -2.],
[ 3., -3.]
])

应用传播规则


好吧!我们现在有一个图,它的邻接矩阵a和一组输入特征X。让我们看看当我们应用传播规则时会发生什么:
In [6]: A * X
Out[6]: matrix([
[ 1., -1.],
[ 5., -5.],
[ 1., -1.],
[ 2., -2.]]

发生了什么事?每个节点(每一行)的表示现在是其相邻特征的总和!换句话说,图卷积层将每个节点表示为其邻域的集合。我鼓励你自己检查一下计算结果。注意,在这种情况下,如果存在V到N的边,则节点N是节点V的邻居。

哦哦!问题就在眼前!


你可能已经发现了问题:

节点的聚合表示不包括其自身的功能!该表示是邻居节点特征的聚合,因此只有具有自循环的节点才会在聚合中包含自己的特征。[1]

具有大角度的节点在其特征表示中将具有大值,而具有小角度的节点将具有小值。这可能导致梯度消失或爆炸[1,2],但对于通常用于训练此类网络且对每个输入特征的比例(或取值范围)敏感的随机梯度下降算法也是有问题的。

在下面,我将分别讨论这些问题。

添加Self-Loops

要解决第一个问题,只需向每个节点添加一个self-loop[1,2]。在实践中,这是通过在应用传播规则之前将单位矩阵I添加到邻接矩阵A来实现的。
In [4]: I = np.matrix(np.eye(A.shape[0]))
I

Out[4]: matrix([
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]
])

In [8]: A_hat = A + I
A_hat * X
Out[8]: matrix([
[ 1., -1.],
[ 6., -6.],
[ 3., -3.],
[ 5., -5.]])

由于节点现在是其自身的邻居,因此在总结其邻居的特征时会包含该节点的自身特征!

规范化特征表示


通过将邻接矩阵A与反度矩阵D相乘,可以通过节点度对特征表示进行规范化[1]。因此,我们的简化传播规则如下所示:

f(XA) = D¹AX


让我们看看会发生什么。首先计算次数矩阵。
In [9]: D = np.array(np.sum(A, axis=0))[0]
D = np.matrix(np.diag(D))
D
Out[9]: matrix([
[1., 0., 0., 0.],
[0., 2., 0., 0.],
[0., 0., 2., 0.],
[0., 0., 0., 1.]
])

在应用规则之前,让我们看看在转换邻接矩阵之后会发生什么。

之前
A = np.matrix([
[0, 1, 0, 0],
[0, 0, 1, 1],
[0, 1, 0, 0],
[1, 0, 1, 0]],
dtype=float
)

之后
In [10]: D**-1 * A
Out[10]: matrix([
[0. , 1. , 0. , 0. ],
[0. , 0. , 0.5, 0.5],
[0. , 0.5, 0. , 0. ],
[0.5, 0. , 0.5, 0. ]
])

观察邻接矩阵的每一行中的权重(值)已除以与该行相对应的节点的阶数。我们将传播规则应用于变换后的邻接矩阵
In [11]: D**-1 * A * X
Out[11]: matrix([
[ 1. , -1. ],
[ 2.5, -2.5],
[ 0.5, -0.5],
[ 2. , -2. ]
])

得到与相邻节点特征均值对应的节点表示。这是因为(转换后的)邻接矩阵中的权重对应于邻接节点特征的加权和中的权重。再次,我鼓励你亲自验证这一观察结果。

原文链接:https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780
欢迎关注ATYUN官方公众号
商务合作及内容投稿请联系邮箱:bd@atyun.com
评论 登录
热门职位
Maluuba
20000~40000/月
Cisco
25000~30000/月 深圳市
PilotAILabs
30000~60000/年 深圳市
写评论取消
回复取消