我们来谈谈如何通过 Python 使用网络摄像头。我有一个简单的任务,需要从摄像头读取帧并对每个帧运行神经网络。对于一个特定的摄像头,我在设置目标fps时遇到了问题,所以深入研究FFmpeg,看看它是否有助于解决问题。
最终,让OpenCV和FFmpeg两者都正常工作了,但我发现了一件非常有趣的事情:在我的主要使用场景中,FFmpeg的性能优于OpenCV。实际上,使用FFmpeg读取帧的速度提高了15倍,整个流水线的速度提高了32%。我简直不敢相信这个结果,多次重新检查了所有内容,但结果始终如一。
注意:当我只是连续读取帧时,性能完全相同,但在读取帧之后运行其他操作(需要时间)时,FFmpeg更快。下面我将详细说明我的意思。
现在,让我们来看一下代码。首先是使用OpenCV读取摄像头帧的类:
class VideoStreamCV:
def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):
self.src = src
self.fps = fps
self.resolution = resolution
self.cap = self._open_camera()
self.wait_for_cam()
def _open_camera(self):
cap = cv2.VideoCapture(self.src)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.resolution[0])
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.resolution[1])
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
cap.set(cv2.CAP_PROP_FOURCC, fourcc)
cap.set(cv2.CAP_PROP_FPS, self.fps)
return cap
def read(self):
ret, frame = self.cap.read()
if not ret:
return None
return frame
def release(self):
self.cap.release()
def wait_for_cam(self):
for _ in range(30):
frame = self.read()
if frame is not None:
return True
return False
我使用wait_for_cam函数,因为摄像头通常需要一段时间来“热身”。同样的预热方式也在FFmpeg类中使用:
class VideoStreamFFmpeg:
def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):
self.src = src
self.fps = fps
self.resolution = resolution
self.pipe = self._open_ffmpeg()
self.frame_shape = (self.resolution[1], self.resolution[0], 3)
self.frame_size = np.prod(self.frame_shape)
self.wait_for_cam()
def _open_ffmpeg(self):
os_name = platform.system()
if os_name == "Darwin": # macOS
input_format = "avfoundation"
video_device = f"{self.src}:none"
elif os_name == "Linux":
input_format = "v4l2"
video_device = f"{self.src}"
elif os_name == "Windows":
input_format = "dshow"
video_device = f"video={self.src}"
else:
raise ValueError("Unsupported OS")
command = [
'ffmpeg',
'-f', input_format,
'-r', str(self.fps),
'-video_size', f'{self.resolution[0]}x{self.resolution[1]}',
'-i', video_device,
'-vcodec', 'mjpeg', # Input codec set to mjpeg
'-an', '-vcodec', 'rawvideo', # Decode the MJPEG stream to raw video
'-pix_fmt', 'bgr24',
'-vsync', '2',
'-f', 'image2pipe', '-'
]
if os_name == "Linux":
command.insert(2, "-input_format")
command.insert(3, "mjpeg")
return subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8
)
def read(self):
raw_image = self.pipe.stdout.read(self.frame_size)
if len(raw_image) != self.frame_size:
return None
image = np.frombuffer(raw_image, dtype=np.uint8).reshape(self.frame_shape)
return image
def release(self):
self.pipe.terminate()
def wait_for_cam(self):
for _ in range(30):
frame = self.read()
if frame is not None:
return True
return False
为了计时运行函数,我使用了装饰器:
def timeit(func):
def wrapper(*args, **kwargs):
t0 = time.perf_counter()
result = func(*args, **kwargs)
t1 = time.perf_counter()
print(f"Main function time: {round(t1-t0, 4)}s")
return result
return wrapper
作为一个重型的合成任务,我使用了这个简单的函数(也可以只是time.sleep)。这是非常重要的一部分,因为如果没有任何任务,OpenCV和FFmpeg的读取速度是相同的:
def computation_task():
for _ in range(5000000):
9999 * 9999
现在是一个循环函数,在循环中我读取帧,计时,然后运行computation_task:
@timeit
def run(cam: VideoStreamCV | VideoStreamFFmpeg, run_task: bool):
timer = []
for _ in range(100):
t0 = time.perf_counter()
cam.read()
timer.append(time.perf_counter() - t0)
if run_task:
computation_task()
cam.release()
return round(np.mean(timer), 4)
最后,main我设置了几个参数,使用OpenCV和FFmpeg初始化了两个视频流,并在不使用computation_task和使用 OpenCV 的情况下运行它们。
def main():
fsp = 30
resolution = (1920, 1080)
for run_task in [False, True]:
ff_cam = VideoStreamFFmpeg(src=0, fps=fsp, resolution=resolution)
cv_cam = VideoStreamCV(src=0, fps=fsp, resolution=resolution)
print(f"FFMPEG, task {run_task}:")
print(f"Mean frame read time: {run(cam=ff_cam, run_task=run_task)}s\n")
print(f"CV2, task {run_task}:")
print(f"Mean frame read time: {run(cam=cv_cam, run_task=run_task)}s\n")
下面是我得到的结果:
FFMPEG, task False:
Main function time: 3.2334s
Mean frame read time: 0.0323s
CV2, task False:
Main function time: 3.3934s
Mean frame read time: 0.0332s
FFMPEG, task True:
Main function time: 4.461s
Mean frame read time: 0.0014s
CV2, task True:
Main function time: 6.6833s
Mean frame read time: 0.023s
因此,在没有合成任务的情况下,我得到了相同的读取时间:0.0323和0.0332。但是有了合成任务后,时间分别为0.0014和0.023,因此FFmpeg显著更快。
下面是一个图表,显示每次迭代所需的时间:读取帧、使用yolov8s模型(在CPU上)处理帧和保存检测到对象的帧:
下面是一个包含合成测试的完整脚本:
import platform
import subprocess
import time
from typing import Tuple
import cv2
import numpy as np
class VideoStreamFFmpeg:
def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):
self.src = src
self.fps = fps
self.resolution = resolution
self.pipe = self._open_ffmpeg()
self.frame_shape = (self.resolution[1], self.resolution[0], 3)
self.frame_size = np.prod(self.frame_shape)
self.wait_for_cam()
def _open_ffmpeg(self):
os_name = platform.system()
if os_name == "Darwin": # macOS
input_format = "avfoundation"
video_device = f"{self.src}:none"
elif os_name == "Linux":
input_format = "v4l2"
video_device = f"{self.src}"
elif os_name == "Windows":
input_format = "dshow"
video_device = f"video={self.src}"
else:
raise ValueError("Unsupported OS")
command = [
'ffmpeg',
'-f', input_format,
'-r', str(self.fps),
'-video_size', f'{self.resolution[0]}x{self.resolution[1]}',
'-i', video_device,
'-vcodec', 'mjpeg', # Input codec set to mjpeg
'-an', '-vcodec', 'rawvideo', # Decode the MJPEG stream to raw video
'-pix_fmt', 'bgr24',
'-vsync', '2',
'-f', 'image2pipe', '-'
]
if os_name == "Linux":
command.insert(2, "-input_format")
command.insert(3, "mjpeg")
return subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8
)
def read(self):
raw_image = self.pipe.stdout.read(self.frame_size)
if len(raw_image) != self.frame_size:
return None
image = np.frombuffer(raw_image, dtype=np.uint8).reshape(self.frame_shape)
return image
def release(self):
self.pipe.terminate()
def wait_for_cam(self):
for _ in range(30):
frame = self.read()
if frame is not None:
return True
return False
class VideoStreamCV:
def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):
self.src = src
self.fps = fps
self.resolution = resolution
self.cap = self._open_camera()
self.wait_for_cam()
def _open_camera(self):
cap = cv2.VideoCapture(self.src)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.resolution[0])
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.resolution[1])
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
cap.set(cv2.CAP_PROP_FOURCC, fourcc)
cap.set(cv2.CAP_PROP_FPS, self.fps)
return cap
def read(self):
ret, frame = self.cap.read()
if not ret:
return None
return frame
def release(self):
self.cap.release()
def wait_for_cam(self):
for _ in range(30):
frame = self.read()
if frame is not None:
return True
return False
def timeit(func):
def wrapper(*args, **kwargs):
t0 = time.perf_counter()
result = func(*args, **kwargs)
t1 = time.perf_counter()
print(f"Main function time: {round(t1-t0, 4)}s")
return result
return wrapper
def computation_task():
for _ in range(5000000):
9999 * 9999
@timeit
def run(cam: VideoStreamCV | VideoStreamFFmpeg, run_task: bool):
timer = []
for _ in range(100):
t0 = time.perf_counter()
cam.read()
timer.append(time.perf_counter() - t0)
if run_task:
computation_task()
cam.release()
return round(np.mean(timer), 4)
def main():
fsp = 30
resolution = (1920, 1080)
for run_task in [False, True]:
ff_cam = VideoStreamFFmpeg(src=0, fps=fsp, resolution=resolution)
cv_cam = VideoStreamCV(src=0, fps=fsp, resolution=resolution)
print(f"FFMPEG, task {run_task}:")
print(f"Mean frame read time: {run(cam=ff_cam, run_task=run_task)}s\n")
print(f"CV2, task {run_task}:")
print(f"Mean frame read time: {run(cam=cv_cam, run_task=run_task)}s\n")
if __name__ == "__main__":
main()
注意:这个脚本是在Apple的M1 Pro芯片上测试的。