推出Llama Packs:预打包模块中心

2023年11月24日 由 alex 发表 501 0

Llama Packs——一个社区驱动的预打包模块中心,你可以用这些模块来快速启动你的大型语言模型(LLM)应用程序。导入这些模块可用于广泛的用例,从构建一个Streamlit应用程序到搭建基于Weaviate的高级检索系统,再到可以进行结构化数据提取的简历解析器。同样重要的是,你可以检查并根据自己的喜好来定制这些模块。


概述


Llama Packs可以用两种方式来描述:


  • 一方面,它们是预先打包的模块,可以通过参数初始化,并且可以开箱即用来实现给定的用例(无论是完整的RAG(可重用、附加、可组合)流程、应用程序模板等)。你还可以导入子模块(例如LLMs、查询引擎)以直接使用。


  • 另一方面,Llama Packs也是你可以查看、修改和使用的模板。


它们可以通过llama_index Python库或命令行界面(CLI)用一行代码下载:


命令行界面(CLI):


llamaindex-cli download-llamapack <pack_name> --download-dir <pack_directory>dir <pack_directory>


Python


from llama_index.llama_pack import download_llama_pack
# download and install dependencies
VoyageQueryEnginePack = download_llama_pack(
  "<pack_name>", "<pack_directory>"
)


Llama Packs可以跨越不同的抽象层次——有些是完整的预打包模板(完整的Streamlit / Gradio应用程序),而有些则结合了一些较小的模块(例如我们的SubQuestionQueryEngine与Weaviate)。


13


示例演练


展示Llama Packs特性最好的方式是展示一个例子。我们将演练一个简单的Llama Packs,它为用户提供了一个搭配Voyage AI嵌入的RAG管道设置。


14


首先,我们下载并初始化一组文档中的Pack:


from llama_index.llama_pack import download_llama_pack
# download pack
VoyageQueryEnginePack = download_llama_pack("VoyageQueryEnginePack", "./voyage_pack")
# initialize pack (assume documents is defined)
voyage_pack = VoyageQueryEnginePack(documents)


每个Llama Packs都实现了一个get_modules()函数,允许你检查/使用模块。


modules = voyage_pack.get_modules()
display(modules)
# get LLM, vector index
llm = modules["llm"]
vector_index = modules["index"]


Llama Packs可以以开箱即用的方式运行。通过调用run,我们将执行RAG管道并获得响应。在这个设置中,你不需要担心内部的问题。


# this will run the full pack
response = voyage_pack.run("What did the author do growing up?", similarity_top_k=2)
print(str(response))


The author spent his time outside of school mainly writing and programming. He wrote short stories and attempted to write programs on an IBM 1401. Later, he started programming on a TRS-80, creating simple games and a word processor. He also painted still lives while studying at the Accademia.


第二件重要的事情是你可以完全访问Llama Packs的代码。这使得你可以自定义Llama Packs,移除代码,或者仅将其作为参考来构建你自己的应用程序。我们来看一下在voyage_pack/base.py中下载的包,并将OpenAI LLM替换为Anthropic:


from llama_index.llms import Anthropic
...
class VoyageQueryEnginePack(BaseLlamaPack):
    def __init__(self, documents: List[Document]) -> None:
        llm = Anthropic()
        embed_model = VoyageEmbedding(
            model_name="voyage-01", voyage_api_key=os.environ["VOYAGE_API_KEY"]
        )
        service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
        self.llm = llm
        self.index = VectorStoreIndex.from_documents(
            documents, service_context=service_context
        )
    def get_modules(self) -> Dict[str, Any]:
        """Get modules."""
        return {"llm": self.llm, "index": self.index}
    def run(self, query_str: str, **kwargs: Any) -> Any:
        """Run the pipeline."""
        query_engine = self.index.as_query_engine(**kwargs)
        return query_engine.query(query_str)


你可以直接重新导入模块并再次运行它:


from voyage_pack.base import VoyageQueryEnginePack
voyage_pack = VoyageQueryEnginePack(documents)
response = voyage_pack.run("What did the author do during his time in RISD?")
print(str(response))
文章来源:https://medium.com/llamaindex-blog/introducing-llama-packs-e14f453b913a
欢迎关注ATYUN官方公众号
商务合作及内容投稿请联系邮箱:bd@atyun.com
评论 登录
热门职位
Maluuba
20000~40000/月
Cisco
25000~30000/月 深圳市
PilotAILabs
30000~60000/年 深圳市
写评论取消
回复取消