数据集:
BeIR/scidocs
BEIR是一个由18个不同数据集组成的异构基准数据集,代表了9个信息检索任务:
所有这些数据集都经过预处理,可以用于实验。
数据集支持排行榜,评估模型的任务特定指标(如F1或EM),以及它们从维基百科检索支持信息的能力。
目前表现最好的模型可以在 here 中找到。
所有任务都是用英语(en)进行的。
所有BEIR数据集必须包含语料库、查询和qrels(相关性判断文件)。它们必须采用以下格式:
任何beir数据集的高级示例:
corpus = { "doc1" : { "title": "Albert Einstein", "text": "Albert Einstein was a German-born theoretical physicist. who developed the theory of relativity, \ one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for \ its influence on the philosophy of science. He is best known to the general public for his mass–energy \ equivalence formula E = mc2, which has been dubbed 'the world's most famous equation'. He received the 1921 \ Nobel Prize in Physics 'for his services to theoretical physics, and especially for his discovery of the law \ of the photoelectric effect', a pivotal step in the development of quantum theory." }, "doc2" : { "title": "", # Keep title an empty string if not present "text": "Wheat beer is a top-fermented beer which is brewed with a large proportion of wheat relative to the amount of \ malted barley. The two main varieties are German Weißbier and Belgian witbier; other types include Lambic (made\ with wild yeast), Berliner Weisse (a cloudy, sour beer), and Gose (a sour, salty beer)." }, } queries = { "q1" : "Who developed the mass-energy equivalence formula?", "q2" : "Which beer is brewed with a large proportion of wheat?" } qrels = { "q1" : {"doc1": 1}, "q2" : {"doc2": 1}, }
所有配置的示例具有以下特征:
Dataset | Website | BEIR-Name | Type | Queries | Corpus | Rel D/Q | Down-load | md5 |
---|---|---|---|---|---|---|---|---|
MSMARCO | 12321321 | msmarco | train dev test | 6,980 | 8.84M | 1.1 | 12322321 | 444067daf65d982533ea17ebd59501e4 |
TREC-COVID | 12323321 | trec-covid | test | 50 | 171K | 493.5 | 12324321 | ce62140cb23feb9becf6270d0d1fe6d1 |
NFCorpus | 12325321 | nfcorpus | train dev test | 323 | 3.6K | 38.2 | 12326321 | a89dba18a62ef92f7d323ec890a0d38d |
BioASQ | 12327321 | bioasq | train test | 500 | 14.91M | 8.05 | No | 12328321 |
NQ | 12329321 | nq | train test | 3,452 | 2.68M | 1.2 | 12330321 | d4d3d2e48787a744b6f6e691ff534307 |
HotpotQA | 12331321 | hotpotqa | train dev test | 7,405 | 5.23M | 2.0 | 12332321 | f412724f78b0d91183a0e86805e16114 |
FiQA-2018 | 12333321 | fiqa | train dev test | 648 | 57K | 2.6 | 12334321 | 17918ed23cd04fb15047f73e6c3bd9d9 |
Signal-1M(RT) | 12335321 | signal1m | test | 97 | 2.86M | 19.6 | No | 12336321 |
TREC-NEWS | 12337321 | trec-news | test | 57 | 595K | 19.6 | No | 12338321 |
ArguAna | 12339321 | arguana | test | 1,406 | 8.67K | 1.0 | 12340321 | 8ad3e3c2a5867cdced806d6503f29b99 |
Touche-2020 | 12341321 | webis-touche2020 | test | 49 | 382K | 19.0 | 12342321 | 46f650ba5a527fc69e0a6521c5a23563 |
CQADupstack | 12343321 | cqadupstack | test | 13,145 | 457K | 1.4 | 12344321 | 4e41456d7df8ee7760a7f866133bda78 |
Quora | 12345321 | quora | dev test | 10,000 | 523K | 1.6 | 12346321 | 18fb154900ba42a600f84b839c173167 |
DBPedia | 12347321 | dbpedia-entity | dev test | 400 | 4.63M | 38.2 | 12348321 | c2a39eb420a3164af735795df012ac2c |
SCIDOCS | 12349321 | scidocs | test | 1,000 | 25K | 4.9 | 12350321 | 38121350fc3a4d2f48850f6aff52e4a9 |
FEVER | 12351321 | fever | train dev test | 6,666 | 5.42M | 1.2 | 12352321 | 5a818580227bfb4b35bb6fa46d9b6c03 |
Climate-FEVER | 12353321 | climate-fever | test | 1,535 | 5.42M | 3.0 | 12354321 | 8b66f0a9126c521bae2bde127b4dc99d |
SciFact | 12355321 | scifact | train test | 300 | 5K | 1.1 | 12356321 | 5f7d1de60b170fc8027bb7898e2efca1 |
Robust04 | 12357321 | robust04 | test | 249 | 528K | 69.9 | No | 12358321 |
[需要更多信息]
[需要更多信息]
谁是源语言的生产者?[需要更多信息]
[需要更多信息]
谁是注释者?[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
引用方式:
@inproceedings{ thakur2021beir, title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models}, author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, year={2021}, url={https://openreview.net/forum?id=wCu6T5xFjeJ} }
感谢 @Nthakur20 添加这个数据集。