数据集:
MBZUAI/LaMini-instruction
Minghao Wu , Abdul Waheed , Chiyu Zhang , Muhammad Abdul-Mageed , Alham Fikri Aji ,
我们通过进行句子/离线蒸馏 (Kim and Rush, 2016) 从大型语言模型中提取知识。我们使用基于几个现有提示资源,包括 gpt-3.5-turbo (Wang et al., 2022), P3 (Sanh et al., 2022), FLAN (Longpre et al., 2023) 以及 Alpaca (Taori et al., 2023),生成了总共 2.58M 对指令和回复。关于生成我们的指令数据集的过程的更多信息,请参考 our paper 。
我们使用 LaMini-Instruction 对各种小型语言模型进行微调,从而得到 LaMini-LM model series 。
每个样本包含以下两个字段:
我们 LaMini-Instruction 数据集中的两个例子:
{ "instruction": "What is the capital of Australia?\n\nIs Canberra the only city chosen to serve as a capital due to a compromise between Sydney and Melbourne?", "response": "The capital of Australia is Canberra. Yes, Canberra was chosen as the capital of Australia in 1908 due to a compromise between Sydney and Melbourne, as neither city wanted the other to become the capital.", "instruction_source": "generated_flan" }
{ "instruction": "Create a poem that has the word \"ocean\" in every other line.", "response": "The ocean's depth is a mystery,\nIts waves crashing with energy.\nSalt air fills the coastal scene,\nThe ocean's blue hues pure and clean.\n\nSeagulls cry out a melancholy song,\nThe ocean's rhythm steady and strong.\nSunsets paint the water gold,\nThe ocean's secrets forever untold.", "instruction_source": "self_instruct_without_topic" }
由于输出是从 ChatGPT 中蒸馏而来,这个数据包含 ChatGPT 产生的错误和偏差。使用此数据集训练的模型将继承这些错误和偏差。我们鼓励用户谨慎使用此数据,并提出新的方法来过滤或改进这些不完善之处。
该数据集可在 Creative Commons NonCommercial (CC BY-NC 4.0) 下获得。
如果您使用我们的数据或模型,请引用我们的文献。
@article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} }