数据集:
cardiffnlp/tweet_topic_single
这是TweetTopic( "Twitter Topic Classification , COLING main conference 2022" )的官方存储库,这是一个在Twitter上进行主题分类的数据集,包含6个标签。每个TweetTopic实例都带有时间戳,时间范围从2019年9月到2021年8月。有关TweetTopic的多标签版本,请参见 cardiffnlp/tweet_topic_multi 。TweetTopic中使用的推文收集与 TweetNER7 中使用的相同。该数据集也集成在 TweetNLP 中。
我们在注释之前对推文进行预处理,以规范化一些工件,将URL转换为特殊标记{{URL}}和非验证用户名转换为{{USERNAME}}。对于经过验证的用户名,我们用符号{@}替换其显示名称(或帐户名称)。例如,一个推文
Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek转换为以下文本。
Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}
以下是格式化推文的简单函数。
import re from urlextract import URLExtract extractor = URLExtract() def format_tweet(tweet): # mask web urls urls = extractor.find_urls(tweet) for url in urls: tweet = tweet.replace(url, "{{URL}}") # format twitter account tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet) return tweet target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek""" target_format = format_tweet(target) print(target_format) 'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
split | number of texts | description |
---|---|---|
test_2020 | 376 | test dataset from September 2019 to August 2020 |
test_2021 | 1693 | test dataset from September 2020 to August 2021 |
train_2020 | 2858 | training dataset from September 2019 to August 2020 |
train_2021 | 1516 | training dataset from September 2020 to August 2021 |
train_all | 4374 | combined training dataset of train_2020 and train_2021 |
validation_2020 | 352 | validation dataset from September 2019 to August 2020 |
validation_2021 | 189 | validation dataset from September 2020 to August 2021 |
train_random | 2830 | randomly sampled training dataset with the same size as train_2020 from train_all |
validation_random | 354 | randomly sampled training dataset with the same size as validation_2020 from validation_all |
test_coling2022_random | 3399 | random split used in the COLING 2022 paper |
train_coling2022_random | 3598 | random split used in the COLING 2022 paper |
test_coling2022 | 3399 | temporal split used in the COLING 2022 paper |
train_coling2022 | 3598 | temporal split used in the COLING 2022 paper |
对于时间偏移设置,模型应该在train_2020上训练,用validation_2020进行验证,并在test_2021上进行评估。一般情况下,模型应该在train_all上进行训练,该数据集是最具代表性的训练集,包括validation_2021,并在test_2021上进行评估。
重要说明:为了获得与COLING 2022 Tweet Topic论文结果可比较的结果,请在时间偏移中使用train_coling2022和test_coling2022,在随机拆分中使用train_coling2022_random和test_coling2022_random(coling2022拆分没有验证集)。
model | training data | F1 | F1 (macro) | Accuracy |
---|---|---|---|---|
12310321 | all (2020 + 2021) | 0.896043 | 0.800061 | 0.896043 |
12311321 | all (2020 + 2021) | 0.887773 | 0.79793 | 0.887773 |
12312321 | all (2020 + 2021) | 0.892499 | 0.774494 | 0.892499 |
12313321 | all (2020 + 2021) | 0.890136 | 0.776025 | 0.890136 |
12314321 | all (2020 + 2021) | 0.894861 | 0.800952 | 0.894861 |
12315321 | 2020 only | 0.878913 | 0.70565 | 0.878913 |
12316321 | 2020 only | 0.868281 | 0.729667 | 0.868281 |
12317321 | 2020 only | 0.882457 | 0.740187 | 0.882457 |
12318321 | 2020 only | 0.87596 | 0.746275 | 0.87596 |
12319321 | 2020 only | 0.877732 | 0.746119 | 0.877732 |
可以在 here 中找到模型微调脚本。
train的一个示例如下。
{ "text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!", "date": "2019-09-08", "label": 4, "id": "1170606779568463874", "label_name": "sports_&_gaming" }
label2id字典可以在 here 中找到。
{ "arts_&_culture": 0, "business_&_entrepreneurs": 1, "pop_culture": 2, "daily_life": 3, "sports_&_gaming": 4, "science_&_technology": 5 }
@inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" }