数据集:
facebook/babi_qa
任务:
问答语言:
en计算机处理:
monolingual语言创建人:
machine-generated批注创建人:
machine-generated源数据集:
original其他:
chained-qa许可:
cc-by-3.0bAbi QA(20)问题回答任务是一组通过问题回答评估阅读理解的代理任务。我们的任务通过多种方式衡量理解能力:系统是否能够通过链式事实、简单归纳、演绎等方式回答问题。这些任务旨在成为与人类交谈的任何系统的先决条件。目的是将这些任务分类为技能集,以便研究人员可以识别(然后纠正)其系统的缺陷。
该数据集支持一组基于故事的问题回答任务,共20个不同类型的英语和印地语的任务。
task_no | task_name |
---|---|
qa1 | single-supporting-fact |
qa2 | two-supporting-facts |
qa3 | three-supporting-facts |
qa4 | two-arg-relations |
qa5 | three-arg-relations |
qa6 | yes-no-questions |
qa7 | counting |
qa8 | lists-sets |
qa9 | simple-negation |
qa10 | indefinite-knowledge |
qa11 | basic-coreference |
qa12 | conjunction |
qa13 | compound-coreference |
qa14 | time-reasoning |
qa15 | basic-deduction |
qa16 | basic-induction |
qa17 | positional-reasoning |
qa18 | size-reasoning |
qa19 | path-finding |
qa20 | agents-motivations |
这些“类型”是:
hn
shuffled
en-10k ,shuffled-10k 和 hn-10k
en-valid 和 en-valid-10k
要获取特定的数据集,请使用 下面的代码:load_dataset('babi_qa',type=f'{type}',task_no=f'{task_no}')其中type是其中一个类型,task_no是任务号。例如,load_dataset('babi_qa',type='en',task_no='qa1')
en-qa1的训练集示例:
{'story': {'answer': ['', '', 'bathroom', '', '', 'hallway', '', '', 'hallway', '', '', 'office', '', '', 'bathroom'], 'id': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15'], 'supporting_ids': [[], [], ['1'], [], [], ['4'], [], [], ['4'], [], [], ['11'], [], [], ['8']], 'text': ['Mary moved to the bathroom.', 'John went to the hallway.', 'Where is Mary?', 'Daniel went back to the hallway.', 'Sandra moved to the garden.', 'Where is Daniel?', 'John moved to the office.', 'Sandra journeyed to the bathroom.', 'Where is Daniel?', 'Mary moved to the hallway.', 'Daniel travelled to the office.', 'Where is Daniel?', 'John went back to the garden.', 'John moved to the bedroom.', 'Where is Sandra?'], 'type': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]}}
拆分和相应的大小如下:
train | test | validation | |
---|---|---|---|
en-qa1 | 200 | 200 | - |
en-qa2 | 200 | 200 | - |
en-qa3 | 200 | 200 | - |
en-qa4 | 1000 | 1000 | - |
en-qa5 | 200 | 200 | - |
en-qa6 | 200 | 200 | - |
en-qa7 | 200 | 200 | - |
en-qa8 | 200 | 200 | - |
en-qa9 | 200 | 200 | - |
en-qa10 | 200 | 200 | - |
en-qa11 | 200 | 200 | - |
en-qa12 | 200 | 200 | - |
en-qa13 | 200 | 200 | - |
en-qa14 | 200 | 200 | - |
en-qa15 | 250 | 250 | - |
en-qa16 | 1000 | 1000 | - |
en-qa17 | 125 | 125 | - |
en-qa18 | 198 | 199 | - |
en-qa19 | 1000 | 1000 | - |
en-qa20 | 94 | 93 | - |
en-10k-qa1 | 2000 | 200 | - |
en-10k-qa2 | 2000 | 200 | - |
en-10k-qa3 | 2000 | 200 | - |
en-10k-qa4 | 10000 | 1000 | - |
en-10k-qa5 | 2000 | 200 | - |
en-10k-qa6 | 2000 | 200 | - |
en-10k-qa7 | 2000 | 200 | - |
en-10k-qa8 | 2000 | 200 | - |
en-10k-qa9 | 2000 | 200 | - |
en-10k-qa10 | 2000 | 200 | - |
en-10k-qa11 | 2000 | 200 | - |
en-10k-qa12 | 2000 | 200 | - |
en-10k-qa13 | 2000 | 200 | - |
en-10k-qa14 | 2000 | 200 | - |
en-10k-qa15 | 2500 | 250 | - |
en-10k-qa16 | 10000 | 1000 | - |
en-10k-qa17 | 1250 | 125 | - |
en-10k-qa18 | 1978 | 199 | - |
en-10k-qa19 | 10000 | 1000 | - |
en-10k-qa20 | 933 | 93 | - |
en-valid-qa1 | 180 | 200 | 20 |
en-valid-qa2 | 180 | 200 | 20 |
en-valid-qa3 | 180 | 200 | 20 |
en-valid-qa4 | 900 | 1000 | 100 |
en-valid-qa5 | 180 | 200 | 20 |
en-valid-qa6 | 180 | 200 | 20 |
en-valid-qa7 | 180 | 200 | 20 |
en-valid-qa8 | 180 | 200 | 20 |
en-valid-qa9 | 180 | 200 | 20 |
en-valid-qa10 | 180 | 200 | 20 |
en-valid-qa11 | 180 | 200 | 20 |
en-valid-qa12 | 180 | 200 | 20 |
en-valid-qa13 | 180 | 200 | 20 |
en-valid-qa14 | 180 | 200 | 20 |
en-valid-qa15 | 225 | 250 | 25 |
en-valid-qa16 | 900 | 1000 | 100 |
en-valid-qa17 | 113 | 125 | 12 |
en-valid-qa18 | 179 | 199 | 19 |
en-valid-qa19 | 900 | 1000 | 100 |
en-valid-qa20 | 85 | 93 | 9 |
en-valid-10k-qa1 | 1800 | 200 | 200 |
en-valid-10k-qa2 | 1800 | 200 | 200 |
en-valid-10k-qa3 | 1800 | 200 | 200 |
en-valid-10k-qa4 | 9000 | 1000 | 1000 |
en-valid-10k-qa5 | 1800 | 200 | 200 |
en-valid-10k-qa6 | 1800 | 200 | 200 |
en-valid-10k-qa7 | 1800 | 200 | 200 |
en-valid-10k-qa8 | 1800 | 200 | 200 |
en-valid-10k-qa9 | 1800 | 200 | 200 |
en-valid-10k-qa10 | 1800 | 200 | 200 |
en-valid-10k-qa11 | 1800 | 200 | 200 |
en-valid-10k-qa12 | 1800 | 200 | 200 |
en-valid-10k-qa13 | 1800 | 200 | 200 |
en-valid-10k-qa14 | 1800 | 200 | 200 |
en-valid-10k-qa15 | 2250 | 250 | 250 |
en-valid-10k-qa16 | 9000 | 1000 | 1000 |
en-valid-10k-qa17 | 1125 | 125 | 125 |
en-valid-10k-qa18 | 1781 | 199 | 197 |
en-valid-10k-qa19 | 9000 | 1000 | 1000 |
en-valid-10k-qa20 | 840 | 93 | 93 |
hn-qa1 | 200 | 200 | - |
hn-qa2 | 200 | 200 | - |
hn-qa3 | 167 | 167 | - |
hn-qa4 | 1000 | 1000 | - |
hn-qa5 | 200 | 200 | - |
hn-qa6 | 200 | 200 | - |
hn-qa7 | 200 | 200 | - |
hn-qa8 | 200 | 200 | - |
hn-qa9 | 200 | 200 | - |
hn-qa10 | 200 | 200 | - |
hn-qa11 | 200 | 200 | - |
hn-qa12 | 200 | 200 | - |
hn-qa13 | 125 | 125 | - |
hn-qa14 | 200 | 200 | - |
hn-qa15 | 250 | 250 | - |
hn-qa16 | 1000 | 1000 | - |
hn-qa17 | 125 | 125 | - |
hn-qa18 | 198 | 198 | - |
hn-qa19 | 1000 | 1000 | - |
hn-qa20 | 93 | 94 | - |
hn-10k-qa1 | 2000 | 200 | - |
hn-10k-qa2 | 2000 | 200 | - |
hn-10k-qa3 | 1667 | 167 | - |
hn-10k-qa4 | 10000 | 1000 | - |
hn-10k-qa5 | 2000 | 200 | - |
hn-10k-qa6 | 2000 | 200 | - |
hn-10k-qa7 | 2000 | 200 | - |
hn-10k-qa8 | 2000 | 200 | - |
hn-10k-qa9 | 2000 | 200 | - |
hn-10k-qa10 | 2000 | 200 | - |
hn-10k-qa11 | 2000 | 200 | - |
hn-10k-qa12 | 2000 | 200 | - |
hn-10k-qa13 | 1250 | 125 | - |
hn-10k-qa14 | 2000 | 200 | - |
hn-10k-qa15 | 2500 | 250 | - |
hn-10k-qa16 | 10000 | 1000 | - |
hn-10k-qa17 | 1250 | 125 | - |
hn-10k-qa18 | 1977 | 198 | - |
hn-10k-qa19 | 10000 | 1000 | - |
hn-10k-qa20 | 934 | 94 | - |
shuffled-qa1 | 200 | 200 | - |
shuffled-qa2 | 200 | 200 | - |
shuffled-qa3 | 200 | 200 | - |
shuffled-qa4 | 1000 | 1000 | - |
shuffled-qa5 | 200 | 200 | - |
shuffled-qa6 | 200 | 200 | - |
shuffled-qa7 | 200 | 200 | - |
shuffled-qa8 | 200 | 200 | - |
shuffled-qa9 | 200 | 200 | - |
shuffled-qa10 | 200 | 200 | - |
shuffled-qa11 | 200 | 200 | - |
shuffled-qa12 | 200 | 200 | - |
shuffled-qa13 | 200 | 200 | - |
shuffled-qa14 | 200 | 200 | - |
shuffled-qa15 | 250 | 250 | - |
shuffled-qa16 | 1000 | 1000 | - |
shuffled-qa17 | 125 | 125 | - |
shuffled-qa18 | 198 | 199 | - |
shuffled-qa19 | 1000 | 1000 | - |
shuffled-qa20 | 94 | 93 | - |
shuffled-10k-qa1 | 2000 | 200 | - |
shuffled-10k-qa2 | 2000 | 200 | - |
shuffled-10k-qa3 | 2000 | 200 | - |
shuffled-10k-qa4 | 10000 | 1000 | - |
shuffled-10k-qa5 | 2000 | 200 | - |
shuffled-10k-qa6 | 2000 | 200 | - |
shuffled-10k-qa7 | 2000 | 200 | - |
shuffled-10k-qa8 | 2000 | 200 | - |
shuffled-10k-qa9 | 2000 | 200 | - |
shuffled-10k-qa10 | 2000 | 200 | - |
shuffled-10k-qa11 | 2000 | 200 | - |
shuffled-10k-qa12 | 2000 | 200 | - |
shuffled-10k-qa13 | 2000 | 200 | - |
shuffled-10k-qa14 | 2000 | 200 | - |
shuffled-10k-qa15 | 2500 | 250 | - |
shuffled-10k-qa16 | 10000 | 1000 | - |
shuffled-10k-qa17 | 1250 | 125 | - |
shuffled-10k-qa18 | 1978 | 199 | - |
shuffled-10k-qa19 | 10000 | 1000 | - |
shuffled-10k-qa20 | 933 | 93 | - |
[需要更多信息]
可用于生成任务的代码在 github 上
语言生产者是谁?[需要更多信息]
[需要更多信息]
注释者是谁?[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
Jesse Dodge、Andreea Gane、Xiang Zhang、Antoine Bordes、Sumit Chopra、Alexander Miller、Arthur Szlam和Jason Weston在Facebook研究院工作。
Creative Commons Attribution 3.0 License
@misc{dodge2016evaluating, title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems}, author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston}, year={2016}, eprint={1511.06931}, archivePrefix={arXiv}, primaryClass={cs.CL} }
感谢 @gchhablani 添加了这个数据集。