数据集:
keremberke/pcb-defect-segmentation
任务:
图像分割['dry_joint', 'incorrect_installation', 'pcb_damage', 'short_circuit']
{'valid': 25, 'train': 128, 'test': 36}
pip install datasets
from datasets import load_dataset ds = load_dataset("keremberke/pcb-defect-segmentation", name="full") example = ds['train'][0]
https://universe.roboflow.com/diplom-qz7q6/defects-2q87r/dataset/8
@misc{ defects-2q87r_dataset, title = { Defects Dataset }, type = { Open Source Dataset }, author = { Diplom }, howpublished = { \\url{ https://universe.roboflow.com/diplom-qz7q6/defects-2q87r } }, url = { https://universe.roboflow.com/diplom-qz7q6/defects-2q87r }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2023 }, month = { jan }, note = { visited on 2023-01-27 }, }
CC BY 4.0
此数据集于2023年1月27日下午1:45(格林威治时间)通过roboflow.com导出
Roboflow 是一个端到端的计算机视觉平台,帮助您
您可以使用此数据集来使用最先进的计算机视觉训练笔记本。访问 https://github.com/roboflow/notebooks
要找到超过100,000个其他数据集和预训练模型,请访问 https://universe.roboflow.com
数据集包括189张图像。缺陷以COCO格式进行注释。
每个图像都应用了以下预处理:
未应用任何图像增强技术。