数据集:
metaeval/disrpt
语言:
en许可:
apache-2.0scditb:
@inproceedings{yang-li-2018-scidtb, title = "{S}ci{DTB}: Discourse Dependency {T}ree{B}ank for Scientific Abstracts", author = "Yang, An and Li, Sujian", booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2018", address = "Melbourne, Australia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P18-2071", doi = "10.18653/v1/P18-2071", pages = "444--449", abstract = "Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. In this paper, we present SciDTB, a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.", }对以上内容翻译成中文,不要翻译大写的英文, 保留a标签以及所有属性,按照此约束返回翻译后的中文
scditb:
@inproceedings{yang-li-2018-scidtb, title = "{S}ci{DTB}: Discourse Dependency {T}ree{B}ank for Scientific Abstracts", author = "Yang, An and Li, Sujian", booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2018", address = "Melbourne, Australia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P18-2071", doi = "10.18653/v1/P18-2071", pages = "444--449", abstract = "Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. In this paper, we present SciDTB, a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.", }