数据集:
nli_tr
Natural Language Inference in Turkish (NLI-TR) 是一个由翻译基础 NLI 语料库(SNLI 和 MNLI)得到的一组大规模数据集,使用了 Amazon Translate 进行翻译。
'validation_matched' 的例子如下。
This example was too long and was cropped: { "hypothesis": "Mrinal Sen'in çalışmalarının çoğu Avrupa koleksiyonlarında bulunabilir.", "idx": 7, "label": 1, "premise": "\"Kalküta, sanatsal yaratıcılığa dair herhangi bir iddiaya sahip olan tek diğer üretim merkezi gibi görünüyor, ama ironik bir şek..." }snli_tr
'train' 的例子如下。
{ "hypothesis": "Yaşlı bir adam, kızının işten çıkmasını bekçiyken suyunu içer.", "idx": 9, "label": 1, "premise": "Parlak renkli gömlek çalışanları arka planda gülümseme iken yaşlı bir adam bir kahve dükkanında küçük bir masada onun portakal suyu ile oturur." }
所有拆分都具有相同的数据字段。
multinli_trtrain | validation_matched | validation_mismatched | |
---|---|---|---|
multinli_tr | 392702 | 10000 | 10000 |
train | validation | test | |
---|---|---|---|
snli_tr | 550152 | 10000 | 10000 |
@inproceedings{budur-etal-2020-data, title = "Data and Representation for Turkish Natural Language Inference", author = "Budur, Emrah and "{O}zçelik, Rıza and G"{u}ng"{o}r, Tunga", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", abstract = "Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.", }
感谢 @e-budur 添加了这个数据集。