数据集:

pysentimiento/spanish-tweets

语言:

es
英文

spanish-tweets

一个用于预训练嵌入和语言模型的大型推文语料库

数据集概述

一个包含(大部分为)西班牙语推文的大型数据集,用于预训练语言模型(或其他表示)。

支持的任务和排行榜

语言建模

语言

主要为西班牙语,但也包含一些葡萄牙语、英语和其他语言。

数据集结构

数据字段

  • tweet_id :推文的id
  • user_id :用户的id
  • text :推文的文本

数据集创建

数据收集的完整过程在论文中有描述。在这里,我们大致概述主要要点:

  • 从上传到Archive.org的Spritzer收集的数据中下载,日期为2019年5月
  • 从中,我们仅保留语言元数据为西班牙语的推文,并标记发布这些推文的用户。
  • 然后,下载这些标记用户的推文信息。

该语料库包含来自约432K个用户的622M条推文。

请注意,我们没有过滤其他语言的推文,因此您可能会在数据集中找到英语、葡萄牙语、加泰罗尼亚语和其他语言的推文(大约有7/8%的推文不是西班牙语)。

引用信息

@inproceedings{perez-etal-2022-robertuito,
    title = "{R}o{BERT}uito: a pre-trained language model for social media text in {S}panish",
    author = "P{\'e}rez, Juan Manuel  and
      Furman, Dami{\'a}n Ariel  and
      Alonso Alemany, Laura  and
      Luque, Franco M.",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.785",
    pages = "7235--7243",
    abstract = "Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for natural language processing tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks; however, for languages other than English, such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model has some cross-lingual abilities, achieving top results for English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and also competitive performance against monolingual models in English Twitter tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it.",
}