数据集:
shunk031/wrime
在这项研究中,我们介绍了一个新的数据集 WRIME,用于情感强度评估。我们收集了作家自己的主观情感强度和读者对其进行的客观情感强度注释,并探讨它们之间的差异。在我们的数据收集过程中,我们通过众包服务雇佣了50名参与者。他们使用主观情感强度注释了自己在社交网络服务 (SNS) 上的过去帖子。我们还雇佣了3名标注员,他们使用客观情感强度注释了所有帖子。结果,我们的日语情感分析数据集包括了17,000条帖子,其中包含Plutchik的八种情绪( Plutchik, 1980 )的主观和客观情感强度,以四分制表示(没有、弱、中、强)。
[需要更多信息]
在加载特定配置时,用户必须附加一个版本相关的后缀:
from datasets import load_dataset dataset = load_dataset("shunk031/wrime", name="ver1") print(dataset) # DatasetDict({ # train: Dataset({ # features: ['sentence', 'user_id', 'datetime', 'writer', 'reader1', 'reader2', 'reader3', 'avg_readers'], # num_rows: 40000 # }) # validation: Dataset({ # features: ['sentence', 'user_id', 'datetime', 'writer', 'reader1', 'reader2', 'reader3', 'avg_readers'], # num_rows: 1200 # }) # test: Dataset({ # features: ['sentence', 'user_id', 'datetime', 'writer', 'reader1', 'reader2', 'reader3', 'avg_readers'], # num_rows: 2000 # }) # })Ver. 1
一个示例如下:
{ "sentence": "ぼけっとしてたらこんな時間。チャリあるから食べにでたいのに…", "user_id": "1", "datetime": "2012/07/31 23:48", "writer": { "joy": 0, "sadness": 1, "anticipation": 2, "surprise": 1, "anger": 1, "fear": 0, "disgust": 0, "trust": 1 }, "reader1": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 0, "disgust": 0, "trust": 0 }, "reader2": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 1, "anger": 0, "fear": 0, "disgust": 0, "trust": 0 }, "reader3": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 1, "disgust": 1, "trust": 0 }, "avg_readers": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 0, "disgust": 0, "trust": 0 } }Ver. 1
一个示例如下:
{ "sentence": "ぼけっとしてたらこんな時間。チャリあるから食べにでたいのに…", "user_id": "1", "datetime": "2012/7/31 23:48", "writer": { "joy": 0, "sadness": 1, "anticipation": 2, "surprise": 1, "anger": 1, "fear": 0, "disgust": 0, "trust": 1, "sentiment": 0 }, "reader1": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 0, "disgust": 0, "trust": 0, "sentiment": -2 }, "reader2": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 1, "disgust": 1, "trust": 0, "sentiment": -1 }, "reader3": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 1, "anger": 0, "fear": 0, "disgust": 0, "trust": 0, "sentiment": -1 }, "avg_readers": { "joy": 0, "sadness": 2, "anticipation": 0, "surprise": 0, "anger": 0, "fear": 0, "disgust": 0, "trust": 0, "sentiment": -1 } }
name | train | validation | test |
---|---|---|---|
ver1 | 40,000 | 1,200 | 2,000 |
ver2 | 30,000 | 2,500 | 2,500 |
[需要更多信息]
[需要更多信息]
谁是源语言的生产者?[需要更多信息]
[需要更多信息]
标注员是谁?[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
来自 GitHub 的 the README :
@inproceedings{kajiwara-etal-2021-wrime, title = "{WRIME}: A New Dataset for Emotional Intensity Estimation with Subjective and Objective Annotations", author = "Kajiwara, Tomoyuki and Chu, Chenhui and Takemura, Noriko and Nakashima, Yuta and Nagahara, Hajime", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.169", doi = "10.18653/v1/2021.naacl-main.169", pages = "2095--2104", abstract = "We annotate 17,000 SNS posts with both the writer{'}s subjective emotional intensity and the reader{'}s objective one to construct a Japanese emotion analysis dataset. In this study, we explore the difference between the emotional intensity of the writer and that of the readers with this dataset. We found that the reader cannot fully detect the emotions of the writer, especially anger and trust. In addition, experimental results in estimating the emotional intensity show that it is more difficult to estimate the writer{'}s subjective labels than the readers{'}. The large gap between the subjective and objective emotions imply the complexity of the mapping from a post to the subjective emotion intensities, which also leads to a lower performance with machine learning models.", }
@inproceedings{suzuki-etal-2022-japanese, title = "A {J}apanese Dataset for Subjective and Objective Sentiment Polarity Classification in Micro Blog Domain", author = "Suzuki, Haruya and Miyauchi, Yuto and Akiyama, Kazuki and Kajiwara, Tomoyuki and Ninomiya, Takashi and Takemura, Noriko and Nakashima, Yuta and Nagahara, Hajime", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.759", pages = "7022--7028", abstract = "We annotate 35,000 SNS posts with both the writer{'}s subjective sentiment polarity labels and the reader{'}s objective ones to construct a Japanese sentiment analysis dataset. Our dataset includes intensity labels (\textit{none}, \textit{weak}, \textit{medium}, and \textit{strong}) for each of the eight basic emotions by Plutchik (\textit{joy}, \textit{sadness}, \textit{anticipation}, \textit{surprise}, \textit{anger}, \textit{fear}, \textit{disgust}, and \textit{trust}) as well as sentiment polarity labels (\textit{strong positive}, \textit{positive}, \textit{neutral}, \textit{negative}, and \textit{strong negative}). Previous studies on emotion analysis have studied the analysis of basic emotions and sentiment polarity independently. In other words, there are few corpora that are annotated with both basic emotions and sentiment polarity. Our dataset is the first large-scale corpus to annotate both of these emotion labels, and from both the writer{'}s and reader{'}s perspectives. In this paper, we analyze the relationship between basic emotion intensity and sentiment polarity on our dataset and report the results of benchmarking sentiment polarity classification.", }
感谢 @moguranosenshi 创建了该数据集。