数据集:
wnut_17
任务:
标记分类语言:
en计算机处理:
monolingual大小:
1K<n<10K语言创建人:
found批注创建人:
crowdsourced源数据集:
original许可:
cc-by-4.0WNUT 17:新兴和罕见实体识别
这个共享任务旨在识别新兴讨论中的不寻常、以前未见过的实体。命名实体构成许多现代方法的基础(如事件聚类和摘要),但是在嘈杂的文本中回溯它们是一个真正的问题,即使在标注者之间也存在这个问题。这种下降往往是由于新的实体和表面形式。例如,考虑一下推文 "so.. kktny in 30 mins?" - 即使是人类专家也很难检测和解析实体kktny。该任务将评估在嘈杂的文本中检测和分类新兴、单个命名实体的能力。
该任务的目标是提供新兴和罕见实体的定义,并基于此定义提供用于检测这些实体的数据集。
'train' 的一个示例如下所示。
{ "id": "0", "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], "tokens": ["@paulwalk", "It", "'s", "the", "view", "from", "where", "I", "'m", "living", "for", "two", "weeks", ".", "Empire", "State", "Building", "=", "ESB", ".", "Pretty", "bad", "storm", "here", "last", "evening", "."] }
所有拆分之间的数据字段是相同的:
train | validation | test |
---|---|---|
3394 | 1009 | 1287 |
@inproceedings{derczynski-etal-2017-results, title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition", author = "Derczynski, Leon and Nichols, Eric and van Erp, Marieke and Limsopatham, Nut", booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W17-4418", doi = "10.18653/v1/W17-4418", pages = "140--147", abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'} hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the ability of participating entries to detect and classify novel and emerging named entities in noisy text.", }
感谢 @thomwolf , @lhoestq , @stefan-it , @lewtun , @jplu 添加此数据集。