数据集:
yoruba_text_c3
语言:
yo计算机处理:
monolingual大小:
100K<n<1M语言创建人:
found批注创建人:
expert-generated源数据集:
original许可:
cc-by-nc-4.0Yorùbá Text C3从网络的各个来源中收集而来(包括圣经、JW300、书籍、新闻文章、维基百科等),以比较预训练的词向量(FastText和BERT)以及在精心筛选的Yorùbá文本上训练的词向量和嵌入模型。该数据集包含干净的文本(即带有正确的Yorùbá音标的文本),如圣经和JW300,以及来自其他在线来源(如维基百科、BBC Yorùbá和VON Yorùbá)的带有错误或缺失音标的嘈杂文本。
用于在Yoruba文本上训练词向量和语言模型。
支持的语言为Yorùbá。
数据点是每行的一个句子。{'text': 'lílo àkàbà — ǹjẹ́ o máa ń ṣe àyẹ̀wò wọ̀nyí tó lè dáàbò bò ẹ́'}
仅包含训练集。
该数据集的创建是为了帮助引入新语言 - Yorùbá的资源。
数据集来自网络的各个来源,如圣经、JW300、书籍、新闻文章、维基百科等。有关数据集和统计数据的摘要,请参见 paper 表中的内容。
谁是源语言生产者?Jehovah Witness (JW300) Yorùbá Bible Yorùbá维基百科BBC Yorùbá VON Yorùbá 全球之声Yorùbá
以及其他来源,请参见 https://www.aclweb.org/anthology/2020.lrec-1.335/
[需要更多信息]
注释者是谁?[需要更多信息]
[需要更多信息]
[需要更多信息]
该数据集对宗教领域(基督教)有偏见,因为包括了JW300和圣经的内容。
[需要更多信息]
数据集由Saarland大学的学生Jesujoba Alabi和David Adelani策划。
数据使用 Creative Commons Attribution-NonCommercial 4.0 许可。
@inproceedings{alabi-etal-2020-massive, title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi", author = "Alabi, Jesujoba and Amponsah-Kaakyire, Kwabena and Adelani, David and Espa{\~n}a-Bonet, Cristina", booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://www.aclweb.org/anthology/2020.lrec-1.335", pages = "2754--2762", abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.", language = "English", ISBN = "979-10-95546-34-4", }
感谢 @dadelani 添加了此数据集。