这是 avishkaarak-ekta-hindi 模型,使用 SQuAD2.0 数据集进行了微调。它是通过问题-回答对进行训练的,包括不可回答的问题,用于问答任务。
语言模型: avishkaarak-ekta-hindi 语言:英语,印地语(即将推出) 下游任务: 提取型问答 训练数据: SQuAD 2.0 评估数据: SQuAD 2.0 代码: 查看 an example QA pipeline on Haystack 基础设施: 4x Tesla v100
batch_size = 4 n_epochs = 50 base_LM_model = "roberta-base" max_seq_len = 512 learning_rate = 9e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64
Haystack是由deepset开发的NLP框架。您可以在Haystack流水线中使用此模型进行大规模的问答(在许多文档上)。要在 Haystack 中加载模型:
reader = FARMReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi") # or reader = TransformersReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi",tokenizer="deepset/roberta-base-squad2")
关于AVISHKAARAM/avishkaarak-ekta-hindi用于问答的完整示例,请查看 Tutorials in Haystack Documentation
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "AVISHKAARAM/avishkaarak-ekta-hindi" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
使用 official eval script 对SQuAD 2.0开发集进行评估。
"exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945
Shashwat Bindal: optimus.coders.@ai
Sanoj: optimus.coders.@ai