模型:
AlexWortega/wortegaLM
这是一个使用95GB代码集进行从零开始训练的类似GPTneo的模型,包括Habra、Pikabu和新闻等数据(大约12亿个令牌)。它可以解决一些简单的任务,但不适用于复杂任务,但作为学生项目的模型非常理想。
from transformers import AutoTokenizer, AutoModelForCausalLM, tokenizer = AutoTokenizer.from_pretrained('AlexWortega/wortegaLM',padding_side='left') device = 'cuda' model = AutoModelForCausalLM.from_pretrained('AlexWortega/wortegaLM') model.resize_token_embeddings(len(tokenizer)) model.to(device) def generate_seqs(q,model, k=2): gen_kwargs = { "min_length": 20, "max_new_tokens": 100, "top_k": 50, "top_p": 0.7, "do_sample": True, "early_stopping": True, "no_repeat_ngram_size": 2, "eos_token_id": tokenizer.eos_token_id, "pad_token_id": tokenizer.eos_token_id, "use_cache": True, "repetition_penalty": 1.5, "length_penalty": 1.2, "num_beams": 4, "num_return_sequences": k } t = tokenizer.encode(q, add_special_tokens=False, return_tensors='pt').to(device) g = model.generate(t, **gen_kwargs) generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=False) return generated_sequences