英文

opus-mt-tc-big-cat_oci_spa-en

神经机器翻译模型,用于将加泰罗尼亚语、奥克西唐语和西班牙语(cat+oci+spa)翻译为英语(en)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型广泛可用并对世界上许多语言进行访问。所有模型最初都是使用令人惊叹的 Marian NMT 框架进行训练的,该框架是用纯C++编写的高效NMT实现。这些模型已使用huggingface的transformers库转换为pyTorch。训练数据来自 OPUS ,并且训练流程使用了 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简单示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "¿Puedo hacerte una pregunta?",
    "Toca algo de música."
]

model_name = "pytorch-models/opus-mt-tc-big-cat_oci_spa-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Can I ask you a question?
#     He plays some music.

您也可以使用transformers pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-cat_oci_spa-en")
print(pipe("¿Puedo hacerte una pregunta?"))

# expected output: Can I ask you a question?

基准测试

langpair testset chr-F BLEU #sent #words
cat-eng tatoeba-test-v2021-08-07 0.72019 57.3 1631 12627
spa-eng tatoeba-test-v2021-08-07 0.76017 62.3 16583 138123
cat-eng flores101-devtest 0.69572 45.4 1012 24721
oci-eng flores101-devtest 0.63347 37.5 1012 24721
spa-eng flores101-devtest 0.59696 29.9 1012 24721
spa-eng newssyscomb2009 0.57104 30.8 502 11818
spa-eng news-test2008 0.55440 27.9 2051 49380
spa-eng newstest2009 0.57153 30.2 2525 65399
spa-eng newstest2010 0.61890 36.8 2489 61711
spa-eng newstest2011 0.60278 34.7 3003 74681
spa-eng newstest2012 0.62760 38.6 3003 72812
spa-eng newstest2013 0.60994 35.3 3000 64505
spa-eng tico19-test 0.74033 51.8 2100 56315

致谢

本工作得到 European Language Grid 的支持,作为 pilot project 2866 的一部分,受 FoTran project 的资助,该项目由欧洲研究理事会 (ERC) 在欧洲联盟的Horizon 2020研究与创新计划(赠款协议号 771113)下,以及由欧盟Horizon 2020研究与创新计划在赠款协议号 780069 下的 MeMAD project 提供资金支持。我们还感谢 CSC -- IT Center for Science 在芬兰提供的慷慨计算资源和IT基础设施。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希值:3405783
  • 转换时间:2022年4月13日18:30:38 EEST
  • 转换机器:LM0-400-22516.local