英文

opus-mt-tc-big-en-fi

神经机器翻译模型,用于从英语(en)翻译为芬兰语(fi)。

此模型是 OPUS-MT project 的一部分,该项目旨在使神经机器翻译模型在世界上许多语言中广泛可用和可访问。所有模型都是使用纯C++编写的出色的 Marian NMT 框架进行训练的。使用转换器库转换模型为pyTorch,由huggingface提供支持。训练数据取自 OPUS ,并使用 OPUS-MT-train 的流程进行训练。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

这是一个具有多个目标语言的多语言翻译模型。需要以表单形式提供句子起始语言标记 >>id<<(id = 有效的目标语言ID),例如 >>fin<<

用法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Russia is big.",
    "Touch wood!"
]

model_name = "pytorch-models/opus-mt-tc-big-en-fi"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Venäjä on suuri.
#     Kosketa puuta!

您还可以使用transformers管道来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-fi")
print(pipe("Russia is big."))

# expected output: Venäjä on suuri.

基准测试

langpair testset chr-F BLEU #sent #words
eng-fin tatoeba-test-v2021-08-07 0.64352 39.3 10690 65122
eng-fin flores101-devtest 0.61334 27.6 1012 18781
eng-fin newsdev2015 0.58367 24.2 1500 23091
eng-fin newstest2015 0.60080 26.4 1370 19735
eng-fin newstest2016 0.61636 28.8 3000 47678
eng-fin newstest2017 0.64381 31.3 3002 45269
eng-fin newstest2018 0.55626 19.7 3000 44836
eng-fin newstest2019 0.58420 26.4 1997 38369
eng-fin newstestB2016 0.57554 23.3 3000 45766
eng-fin newstestB2017 0.60212 26.8 3002 45506

致谢

该工作得到 European Language Grid 的支持,作为 pilot project 2866 的一部分,受到 FoTran project 的资助,该项目由欧洲研究理事会(ERC)通过欧盟的Horizon 2020研究与创新计划(批准号:771113)和 MeMAD project 的资助,该项目由欧盟Horizon 2020研究与创新计划(批准号:780069)提供。我们还感谢提供的慷慨计算资源和IT基础设施的 CSC -- IT Center for Science ,芬兰。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:f084bad
  • 端口时间:Tue Mar 22 14:42:32 EET 2022
  • 端口机器:LM0-400-22516.local