神经机器翻译模型,用于将英语(en)翻译为土耳其语(tr)。
该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上众多语言中得以广泛使用和获取。所有模型最初使用 Marian NMT 的出色框架进行训练, Marian NMT 是一款使用纯C++编写的高效NMT实现。使用transformers库由huggingface将模型转换为pyTorch。训练数据来自 OPUS ,训练流程使用了 OPUS-MT-train 的程序。
@inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", }
一个简短的示例代码:
from transformers import MarianMTModel, MarianTokenizer src_text = [ "I know Tom didn't want to eat that.", "On Sundays, we would get up early and go fishing." ] model_name = "pytorch-models/opus-mt-tc-big-en-tr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tom'un bunu yemek istemediğini biliyorum. # Pazar günleri erkenden kalkıp balık tutmaya giderdik.
您还可以使用transformers的pipelines来使用OPUS-MT模型,例如:
from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-tr") print(pipe("I know Tom didn't want to eat that.")) # expected output: Tom'un bunu yemek istemediğini biliyorum.
langpair | testset | chr-F | BLEU | #sent | #words |
---|---|---|---|---|---|
eng-tur | tatoeba-test-v2021-08-07 | 0.68726 | 42.3 | 13907 | 84364 |
eng-tur | flores101-devtest | 0.62829 | 31.4 | 1012 | 20253 |
eng-tur | newsdev2016 | 0.58947 | 21.9 | 1001 | 15958 |
eng-tur | newstest2016 | 0.57624 | 23.4 | 3000 | 50782 |
eng-tur | newstest2017 | 0.58858 | 25.4 | 3007 | 51977 |
eng-tur | newstest2018 | 0.57848 | 22.6 | 3000 | 53731 |
该工作得到 European Language Grid 的支持,作为 pilot project 2866 的一部分,通过欧洲研究理事会(ERC)在欧洲联盟的Horizon 2020研究和创新计划(授权协议号771113)下由 FoTran project 资助,以及 MeMAD project ,欧盟的Horizon 2020研究和创新计划根据授权协议号780069提供的资助。我们还感谢 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施,芬兰。