英文

opus-mt-tc-big-en-tr

神经机器翻译模型,用于将英语(en)翻译为土耳其语(tr)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上众多语言中得以广泛使用和获取。所有模型最初使用 Marian NMT 的出色框架进行训练, Marian NMT 是一款使用纯C++编写的高效NMT实现。使用transformers库由huggingface将模型转换为pyTorch。训练数据来自 OPUS ,训练流程使用了 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

一个简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "I know Tom didn't want to eat that.",
    "On Sundays, we would get up early and go fishing."
]

model_name = "pytorch-models/opus-mt-tc-big-en-tr"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Tom'un bunu yemek istemediğini biliyorum.
#     Pazar günleri erkenden kalkıp balık tutmaya giderdik.

您还可以使用transformers的pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-tr")
print(pipe("I know Tom didn't want to eat that."))

# expected output: Tom'un bunu yemek istemediğini biliyorum.

基准测试

langpair testset chr-F BLEU #sent #words
eng-tur tatoeba-test-v2021-08-07 0.68726 42.3 13907 84364
eng-tur flores101-devtest 0.62829 31.4 1012 20253
eng-tur newsdev2016 0.58947 21.9 1001 15958
eng-tur newstest2016 0.57624 23.4 3000 50782
eng-tur newstest2017 0.58858 25.4 3007 51977
eng-tur newstest2018 0.57848 22.6 3000 53731

致谢

该工作得到 European Language Grid 的支持,作为 pilot project 2866 的一部分,通过欧洲研究理事会(ERC)在欧洲联盟的Horizon 2020研究和创新计划(授权协议号771113)下由 FoTran project 资助,以及 MeMAD project ,欧盟的Horizon 2020研究和创新计划根据授权协议号780069提供的资助。我们还感谢 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施,芬兰。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:3405783
  • 转换时间:2022年4月13日18:11:39 EEST
  • 转换机器:LM0-400-22516.local