英文

opus-mt-tc-big-et-en

神经机器翻译模型,用于将爱沙尼亚语(et)翻译成英语(en)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上许多语言中广泛可用和易于访问。所有模型最初都是使用纯C++编写的高效NMT实现框架 Marian NMT 进行训练的。这些模型已经使用huggingface的transformers库转换为pyTorch。训练数据来自 OPUS 并且训练流程使用 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Takso ootab.",
    "Kon sa elät?"
]

model_name = "pytorch-models/opus-mt-tc-big-et-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Taxi's waiting.
#     Kon you elät?

您也可以使用transformers库的pipelines功能来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-et-en")
print(pipe("Takso ootab."))

# expected output: Taxi's waiting.

基准测试

langpair testset chr-F BLEU #sent #words
est-eng tatoeba-test-v2021-08-07 0.73707 59.7 1359 8811
est-eng flores101-devtest 0.64463 38.6 1012 24721
est-eng newsdev2018 0.59899 33.8 2000 43068
est-eng newstest2018 0.60708 34.3 2000 45405

致谢

该工作得到 European Language Grid 的支持,以及 pilot project 2866 提供的资源支持,该项目由欧洲研究理事会(ERC)根据欧洲联盟的Horizon 2020研究和创新计划(授权协议号771113)以及 FoTran project MeMAD project 在欧洲联盟的Horizon 2020研究和创新计划(授权协议号780069)下资助。我们还感谢 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施,芬兰。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希值:3405783
  • 转换时间:2022年4月13日18:54:11 EEST
  • 转换机器:LM0-400-22516.local