英文

opus-mt-tc-big-fi-en

神经机器翻译模型,用于将芬兰语(fi)翻译为英语(en)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型广泛可用和可访问,适用于世界上许多语言。所有模型都是使用 Marian NMT 的出色框架训练的, Marian NMT 是一个使用纯C++编写的高效NMT实现。模型已经使用huggingface的transformers库转换为pyTorch。训练数据来自 OPUS ,训练流程使用了 OPUS-MT-train 的过程。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Kolme kolmanteen on kaksikymmentäseitsemän.",
    "Heille syntyi poikavauva."
]

model_name = "pytorch-models/opus-mt-tc-big-fi-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

您还可以使用transformers pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
print(pipe("Kolme kolmanteen on kaksikymmentäseitsemän."))

基准测试

langpair testset chr-F BLEU #sent #words
fin-eng tatoeba-test-v2021-08-07 0.72298 57.4 10690 80552
fin-eng flores101-devtest 0.62521 35.4 1012 24721
fin-eng newsdev2015 0.56232 28.6 1500 32012
fin-eng newstest2015 0.57469 29.9 1370 27270
fin-eng newstest2016 0.60715 34.3 3000 62945
fin-eng newstest2017 0.63050 37.3 3002 61846
fin-eng newstest2018 0.54199 27.1 3000 62325
fin-eng newstest2019 0.59620 32.7 1996 36215
fin-eng newstestB2016 0.55472 27.9 3000 62945
fin-eng newstestB2017 0.58847 31.1 3002 61846

致谢

该工作得到 European Language Grid 的支持,作为 pilot project 2866 ,由欧洲研究理事会(ERC)在欧洲联盟的Horizon 2020研究和创新计划(授权合同编号 771113)下资助,以及 FoTran project 的支持,由欧洲联盟的Horizon 2020研究和创新计划在授权合同编号 780069 下资助。我们还感谢芬兰的 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希值:f084bad
  • 转换时间:Tue Mar 22 14:52:19 EET 2022
  • 转换机器:LM0-400-22516.local