英文

opus-mt-tc-big-hu-en

神经机器翻译模型,用于将匈牙利语(hu)翻译为英语(en)。

该模型是 OPUS-MT project 的一部分,致力于为世界上许多语言提供广泛可用且易于获取的神经机器翻译模型。所有模型最初都是使用 Marian NMT 的出色框架进行训练的,该框架是用纯 C++ 编写的高效 NMT 实现。使用 transformers 库的 pyTorch 将模型转换为 pyTorch。训练数据来自 OPUS ,训练流程使用了 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简短示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Bárcsak ne láttam volna ilyen borzalmas filmet!",
    "Iskolában van."
]

model_name = "pytorch-models/opus-mt-tc-big-hu-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     I wish I hadn't seen such a terrible movie.
#     She's at school.

您还可以使用 transformers 的 pipelines 来使用 OPUS-MT 模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-hu-en")
print(pipe("Bárcsak ne láttam volna ilyen borzalmas filmet!"))

# expected output: I wish I hadn't seen such a terrible movie.

基准测试

langpair testset chr-F BLEU #sent #words
hun-eng tatoeba-test-v2021-08-07 0.66644 50.4 13037 94699
hun-eng flores101-devtest 0.61974 34.6 1012 24721
hun-eng newssyscomb2009 0.52563 24.7 502 11818
hun-eng newstest2009 0.51698 23.4 2525 65399

致谢

这项工作得到 European Language Grid 的支持,作为 pilot project 2866 ,以及 FoTran project ,该项目由欧洲研究理事会(ERC)根据欧盟的Horizon 2020研究和创新计划(授予协议编号771113)资助,以及 MeMAD project ,该项目由欧盟的Horizon 2020研究和创新计划根据授予协议编号780069资助。我们还感谢 CSC -- IT Center for Science 提供的慷慨的计算资源和IT基础设施,芬兰。

模型转换信息

  • transformers 版本:4.16.2
  • OPUS-MT git 哈希值:3405783
  • 转换时间:2022年4月13日星期三19:33:38 EEST
  • 转换机器:LM0-400-22516.local