英文

opus-mt-tc-big-tr-en

神经机器翻译模型,用于将土耳其语(tr)翻译成英语(en)。

此模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上许多语言中广泛可用和可访问。所有模型最初使用 Marian NMT 的优秀框架进行训练,这是一个用纯 C++ 编写的高效 NMT 实现。使用 transformers 库和 huggingface 将模型转换为 pyTorch。训练数据取自 OPUS ,并使用 OPUS-MT-train 的流程进行训练。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Allahsızlığı Yayma Kürsüsü başkanıydı.",
    "Tom'a ne olduğunu öğrenin."
]

model_name = "pytorch-models/opus-mt-tc-big-tr-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     He was the president of the Curse of Spreading Godlessness.
#     Find out what happened to Tom.

您还可以使用 transformers pipelines 使用 OPUS-MT 模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-tr-en")
print(pipe("Allahsızlığı Yayma Kürsüsü başkanıydı."))

# expected output: He was the president of the Curse of Spreading Godlessness.

基准测试

langpair testset chr-F BLEU #sent #words
tur-eng tatoeba-test-v2021-08-07 0.71895 57.6 13907 109231
tur-eng flores101-devtest 0.64152 37.6 1012 24721
tur-eng newsdev2016 0.58658 32.1 1001 21988
tur-eng newstest2016 0.56960 29.3 3000 66175
tur-eng newstest2017 0.57455 29.7 3007 67703
tur-eng newstest2018 0.58488 30.7 3000 68725

鸣谢

该工作得到 European Language Grid 的支持,作为 pilot project 2866 ,以及 FoTran project 的支持,该项目由欧洲研究委员会(ERC)在欧洲联盟的Horizon 2020研究和创新计划(授权协议编号:771113)下资助,以及 MeMAD project 的支持,该项目在欧洲联盟的Horizon 2020研究和创新计划下获得资助,授权协议编号:780069。我们还对芬兰的 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施表示感谢。

模型转换信息

  • transformers 版本:4.16.2
  • OPUS-MT git hash:3405783
  • 转换时间:2022年4月13日20:02:48 EEST
  • 转换机器:LM0-400-22516.local