模型:
IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity
2021年登顶FewCLUE和ZeroCLUE的中文BERT,在数个相似度任务上微调后的版本
This is the fine-tuned version of the Chinese BERT model on several similarity datasets, which topped FewCLUE and ZeroCLUE benchmark in 2021
需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
---|---|---|---|---|---|
通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | MegatronBert | 1.3B | 相似度 Similarity |
基于 Erlangshen-MegatronBert-1.3B ,我们在收集的20个中文领域的改写数据集,总计2773880个样本上微调了一个Similarity版本。
Based on Erlangshen-MegatronBert-1.3B , we fine-tuned a similarity version on 20 Chinese paraphrase datasets, with totaling 2,773,880 samples.
Model | BQ | BUSTM | AFQMC |
---|---|---|---|
Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 |
Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 |
Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - |
from transformers import AutoModelForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity') model=AutoModelForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity') texta='今天的饭不好吃' textb='今天心情不好' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1))
如果您在您的工作中使用了我们的模型,可以引用我们的对该模型的论文:
If you are using the resource for your work, please cite our paper for this model:
@article{fengshenbang/erlangshen-megatronbert-sim, author = {Junjie Wang and Yuxiang Zhang and Ping Yang and Ruyi Gan}, title = {Towards No.1 in {CLUE} Semantic Matching Challenge: Pre-trained Language Model Erlangshen with Propensity-Corrected Loss}, journal = {CoRR}, volume = {abs/2208.02959}, year = {2022} }
如果您在您的工作中使用了我们的模型,也可以引用我们的 总论文 :
If you are using the resource for your work, please cite our overview paper :
@article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} }
也可以引用我们的 网站 :
You can also cite our website :
@misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, }