模型:
Norod78/sd2-simpsons-blip
*在与"辛普森一家"相关的图像上进行微调的稳定扩散 v2.0
如果您想了解如何生成您自己的带标题数据集的更多细节,请参阅此 colab
训练是使用Hugging-Face的文本到图像训练的稍作修改的版本完成的 example script
输入文本提示并生成卡通/辛普森风格的图片
main 文件夹包含一个 .ckpt 文件和一个 .yaml 文件,将它们放入 stable-diffusion-webui "stable-diffusion-webui/models/Stable-diffusion" 文件夹中并用于生成图片
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler import torch # this will substitute the default PNDM scheduler for K-LMS lms = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) guidance_scale=8.5 seed=777 steps=50 cartoon_model_path = "Norod78/sd2-simpsons-blip" cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) cartoon_pipe.to("cuda") def generate(prompt, file_prefix ,samples): torch.manual_seed(seed) prompt += ", Very detailed, clean, high quality, sharp image" cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] for idx, image in enumerate(cartoon_images): image.save(f"{file_prefix}-{idx}-{seed}-sd2-simpsons-blip.jpg") generate("An oil painting of Snoop Dogg as a simpsons character", "01_SnoopDog", 4) generate("Gal Gadot, cartoon", "02_GalGadot", 4) generate("A cartoony Simpsons town", "03_SimpsonsTown", 4) generate("Pikachu with the Simpsons, Eric Wallis", "04_PikachuSimpsons", 4)
在 BLIP captioned Simpsons images 上,使用 1xA5000 GPU 在我的家用台式电脑上对 stabilityai/stable-diffusion-2-base 进行了 10,000 次迭代的微调
训练者是 @Norod78