模型:
OpenAssistant/galactica-6.7b-finetuned
Galactica-6.7b finetuned on webgpt and prompt_dialogue (version v2)
Demo use:
import torch from torch import nn from torch.nn import functional as F import transformers base_path = 'OpenAssistant/galactica-6.7b-finetuned' model = transformers.OPTForCausalLM.from_pretrained( base_path, load_in_8bit=True, device_map='auto', low_cpu_mem_usage=True, torch_dtype=torch.float16, offload_state_dict=True ) model.gradient_checkpointing_enable() # reduce number of stored activations model.model.decoder.project_in = lambda x: x.requires_grad_(True) class CastOutputToFloat(nn.Sequential): def forward(self, x): return super().forward(x).to(torch.float32) model.lm_head = CastOutputToFloat(model.lm_head) tokenizer = transformers.AutoTokenizer.from_pretrained(base_path) batch = tokenizer.encode("<question>What are the symptoms of Alzheimer's disease?<answer>", return_tensors="pt") with torch.cuda.amp.autocast(): out = model.generate( input_ids=batch.to(model.device), max_length=300, do_sample=True, top_k=40, num_beams=1, num_return_sequences=1, eos_token_id=tokenizer.additional_special_tokens_ids[tokenizer.additional_special_tokens.index('<question>')] ) print(tokenizer.decode(out[0, :-1]).replace('<question>', "User:\n").replace('<answer>', '\nAssistant:\n'))