模型:
OpenAssistant/reward-model-deberta-v3-large
训练的奖励模型(RM)根据给定的问题,预测哪个生成的答案被人类评为更好。
RM在以下领域中很有用:
所有模型都使用同一种数据集分割种子进行训练(如果没有可用的验证分割)
from transformers import AutoModelForSequenceClassification, AutoTokenizer reward_name = "OpenAssistant/reward-model-deberta-v3-large" rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name) question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants." inputs = tokenizer(question, answer, return_tensors='pt') score = rank_model(**inputs).logits[0].cpu().detach() print(score)
验证分割准确性
Model | 1234321 | 1235321 | 1236321 |
---|---|---|---|
1237321 | 59.30 | 68.66 | 99.85 |
1238321 | 61.13 | 72.23 | 99.94 |
1239321 | 59.07 | 66.84 | 99.85 |
很可能SytheticGPT在选择-拒绝对中存在某种表面模式,这使得区分更好的答案变得容易。