使用预训练模型在本地音频文件中预测情绪的工作示例
def predict_emotion_hubert(audio_file): """ inspired by an example from https://github.com/m3hrdadfi/soxan """ from audio_models import HubertForSpeechClassification from transformers import Wav2Vec2FeatureExtractor, AutoConfig import torch.nn.functional as F import torch import numpy as np from pydub import AudioSegment model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") sampling_rate=16000 # defined by the model; must convert mp3 to this rate. config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") def speech_file_to_array(path, sampling_rate): # using torchaudio... # speech_array, _sampling_rate = torchaudio.load(path) # resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) # speech = resampler(speech_array).squeeze().numpy() sound = AudioSegment.from_file(path) sound = sound.set_frame_rate(sampling_rate) sound_array = np.array(sound.get_array_of_samples()) return sound_array sound_array = speech_file_to_array(audio_file, sampling_rate) inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to("cpu").float() for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{ "emo": config.id2label[i], "score": round(score * 100, 1)} for i, score in enumerate(scores) ] return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2]
result = predict_emotion_hubert("male-crying.mp3") >>> result [{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}]