模型:
Sunbird/sunbird-lug-tts
This repository provides all the necessary tools for Text-to-Speech (TTS) with SpeechBrain.
The pre-trained model takes in input a short text and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram.
pip install speechbrain
import torchaudio from speechbrain.pretrained import Tacotron2 from speechbrain.pretrained import HIFIGAN # Intialize TTS (tacotron2) and Vocoder (HiFIGAN) tacotron2 = Tacotron2.from_hparams(source="/Sunbird/sunbird-lug-tts", savedir="tmpdir_tts") hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder") # Running the TTS mel_output, mel_length, alignment = tacotron2.encode_text("Mbagaliza Christmass Enungi Nomwaka Omugya Gubaberere Gwamirembe") # Running Vocoder (spectrogram-to-waveform) waveforms = hifi_gan.decode_batch(mel_output) # Save the waverform torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 22050)
If you want to generate multiple sentences in one-shot, you can do in this way:
from speechbrain.pretrained import Tacotron2 tacotron2 = Tacotron2.from_hparams(source="speechbrain/TTS_Tacotron2", savedir="tmpdir") items = [ "Nsanyuse okukulaba", "Erinnya lyo ggwe ani?", "Mbagaliza Christmass Enungi Nomwaka Omugya Gubaberere Gwamirembe" ] mel_outputs, mel_lengths, alignments = tacotron2.encode_batch(items)
To perform inference on the GPU, add run_opts={"device":"cuda"} when calling the from_hparams method.