模型:
TheBloke/UltraLM-13B-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 Open BMB's UltraLM 13B 的GPTQ模型文件。
提供了多种GPTQ参数排列方式;有关提供的选项、参数及用于创建它们的软件的详细信息,请参阅下面的提供的文件。
这些模型是使用 Latitude.sh 友好提供的硬件进行量化的。
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
提供了多个量化参数,以便您选择最适合您的硬件和需求的参数。
每个单独的量化方式位于不同的分支中。请参阅下面有关从不同分支获取的说明。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/UltraLM-13B-GPTQ`
确保您使用的是最新版本的 text-generation-webui 。
强烈建议使用一键安装程序进行安装,除非您知道如何手动安装。
首先确保您已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/UltraLM-13B-GPTQ" model_basename = "ultralm-13b-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件将与AutoGPTQ(CUDA和Triton模式)、GPTQ-for-LLaMa(仅测试了CUDA)和Occ4m的GPTQ-for-LLaMa分支一起工作。
ExLlama与4位Llama模型兼容。有关每个文件的兼容性,请参阅上面的提供的文件表。
如需进一步的支持以及关于这些模型和AI的讨论,请加入我们的:
感谢 chirper.ai 团队!
很多人问是否可以做贡献。我喜欢提供模型并帮助人们,并希望能有更多时间来做这些事情,也希望能够扩展到像微调/训练等新项目中。
如果您有能力和意愿贡献,将非常感激,并将帮助我继续提供更多模型并开始新的AI项目。
捐赠者将优先获得有关所有AI/LLM/模型问题和请求的支持,并可访问私人Discord聊天室,以及其他福利。
特别感谢:CarbonQuill的Luke,Aemon Algiz。
Patreon特别提及:Space Cruiser,Nikolai Manek,Sam,Chris McCloskey,Rishabh Srivastava,Kalila,Spiking Neurons AB,Khalefa Al-Ahmad,WelcomeToTheClub,Chadd,Lone Striker,Viktor Bowallius,Edmond Seymore,Ai Maven,Chris Smitley,Dave,Alexandros Triantafyllidis,Luke @flexchar,Elle,ya boyyy,Talal Aujan,Alex,Jonathan Leane,Deep Realms,Randy H,subjectnull,Preetika Verma,Joseph William Delisle,Michael Levine,Chris Gileta,K,Oscar Rangel,LangChain4j,Trenton Dambrowitz,Eugene Pentland,Johann-Peter Hartmann,Femi Adebogun,Illia Dulskyi,senxiiz,Daniel P. Andersen,Sean Connelly,Artur Olbinski,RoA,Mano Prime,Derek Yates,Raven Klaugh,David Flickinger,Willem Michiel,Pieter,Willian Hasse,vamX,Luke Pendergrass,webtim,Ghost,Rainer Wilmers,Nathan LeClaire,Will Dee,Cory Kujawski,John Detwiler,Fred von Graf,biorpg,Iucharbius,Imad Khwaja,Pierre Kircher,terasurfer,Asp the Wyvern,John Villwock,the Transient,zynix,Gabriel Tamborski,Fen Risland,Gabriel Puliatti,Matthew Berman,Pyrater,SuperWojo,Stephen Murray,Karl Bernard,Ajan Kanaga,Greatston Gnanesh,Junyu Yang。
感谢所有慷慨的赞助人和捐赠者!
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 Open BMB's UltraLM 13B 的pytorch格式fp16模型文件。
这是将源存储库合并和/或转换为float16的结果。
USER: prompt ASSISTANT:
如需进一步的支持以及关于这些模型和AI的讨论,请加入我们的:
感谢 chirper.ai 团队!
很多人问是否可以做贡献。我喜欢提供模型并帮助人们,并希望能够花更多时间做这些事情,以及扩展到微调/训练等新项目中。
如果您有能力和意愿贡献,将非常感激,并将帮助我继续提供更多模型,并开始新的AI项目。
捐赠者将优先获得有关所有AI/LLM/模型问题和请求的支持,并可访问私人Discord聊天室,以及其他福利。
特别感谢:CarbonQuill的Luke,Aemon Algiz,Dmitriy Samsonov。
Patreon特别提及:zynix,ya boyyy,Trenton Dambrowitz,Imad Khwaja,Alps Aficionado,chris gileta,John Detwiler,Willem Michiel,RoA,Mano Prime,Rainer Wilmers,Fred von Graf,Matthew Berman,Ghost,Nathan LeClaire,Iucharbius,Ai Maven,Illia Dulskyi,Joseph William Delisle,Space Cruiser,Lone Striker,Karl Bernard,Eugene Pentland,Greatston Gnanesh,Jonathan Leane,Randy H,Pierre Kircher,Willian Hasse,Stephen Murray,Alex,terasurfer,Edmond Seymore,Oscar Rangel,Luke Pendergrass,Asp the Wyvern,Junyu Yang,David Flickinger,Luke,Spiking Neurons AB,subjectnull,Pyrater,Nikolai Manek,senxiiz,Ajan Kanaga,Johann-Peter Hartmann,Artur Olbinski,Kevin Schuppel,Derek Yates,Kalila,K,Talal Aujan,Khalefa Al-Ahmad,Gabriel Puliatti,John Villwock,WelcomeToTheClub,Daniel P. Andersen,Preetika Verma,Deep Realms,Fen Risland,trip7s trip,webtim,Sean Connelly,Michael Levine,Chris McCloskey,biorpg,vamX,Viktor Bowallius,Cory Kujawski。
感谢所有慷慨的赞助人和捐赠者!
这是UltraLM-13b delta权重,一个基于 UltraChat 训练的聊天语言模型
该模型基于LLaMA-13b进行微调,以多回合的聊天格式模板为基础,如下所示
User: instruction 1<eos_token> Assistant: response 1<eos_token> User: instruction 2<eos_token> Assistant: response 2<eos_token> ...
要使用此模型,您需要从增量权重中获取完整模型,并按照以下模板执行推断:
[Optional]User: system prompt<eos_token> User: user input<eos_token> Assistant: