模型:
TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是 Eric Hartford's Wizard-Vicuna-30B-Uncensored 的GPTQ模型文件。
提供了多个GPTQ参数的排列组合;有关所提供选项、其参数及用于创建它们的软件的详细信息,请参阅下面的“提供的文件”。
这些模型是使用由 Latitude.sh 慷慨提供的硬件进行量子化的。
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
提供了多个量子化参数,您可以选择最适合自己硬件和需求的参数。
每个不同程度的量子化都在不同的分支中。 有关从不同分支获取的说明,请参见下文。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ`
请确保您正在使用 text-generation-webui 的最新版本。
强烈建议使用text-generation-webui的一键安装程序,除非您知道如何进行手动安装。
首先确保已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ" model_basename = "Wizard-Vicuna-30B-Uncensored-GPTQ-4bit--1g.act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=False, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=False, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件可与AutoGPTQ(CUDA和Triton模式)、GPTQ-for-LLaMa(仅测试了CUDA)和Occ4m的GPTQ-for-LLaMa分叉版本一起使用。
ExLlama适用于4位Llama模型。有关每个文件的兼容性,请参见上述提供的文件表。
如需进一步支持以及有关这些模型和人工智能的讨论,请加入我们:
感谢 chirper.ai 团队!
很多人问我是否可以做出贡献。我喜欢提供模型和帮助他人,并希望能够有更多时间从事此工作,同时扩展到新项目,如微调/训练。
如果您有能力和意愿进行贡献,我将非常感激,并将帮助我继续提供更多模型,并开始新的人工智能项目。
捐助者将优先获得有关任何和所有人工智能/LLM/模型问题和请求的支持,可以进入一个私人Discord房间,以及其他优势。
特别感谢 :来自CarbonQuill的Luke,Aemon Algiz。
Patreon特别提到了 :Space Cruiser,Nikolai Manek,Sam,Chris McCloskey,Rishabh Srivastava,Kalila,Spiking Neurons AB,Khalefa Al-Ahmad,WelcomeToTheClub,Chadd,Lone Striker,Viktor Bowallius,Edmond Seymore,Ai Maven,Chris Smitley,Dave,Alexandros Triantafyllidis,Luke @flexchar,Elle,ya boyyy,Talal Aujan,Alex,Jonathan Leane,Deep Realms,Randy H,subjectnull,Preetika Verma,Joseph William Delisle,Michael Levine,chris gileta,K,Oscar Rangel,LangChain4j,Trenton Dambrowitz,Eugene Pentland,Johann-Peter Hartmann,Femi Adebogun,Illia Dulskyi,senxiiz,Daniel P. Andersen,Sean Connelly,Artur Olbinski,RoA,Mano Prime,Derek Yates,Raven Klaugh,David Flickinger,Willem Michiel,Pieter,Willian Hasse,vamX,Luke Pendergrass,webtim,Ghost ,Rainer Wilmers,Nathan LeClaire,Will Dee,Cory Kujawski,John Detwiler,Fred von Graf,biorpg,Iucharbius ,Imad Khwaja,Pierre Kircher,terasurfer ,Asp the Wyvern,John Villwock,theTransient,zynix ,Gabriel Tamborski,Fen Risland,Gabriel Puliatti,Matthew Berman,Pyrater,SuperWojo,Stephen Murray,Karl Bernard,Ajan Kanaga,Greatston Gnanesh,Junyu Yang。
感谢所有慷慨的赞助者和捐助者!
这是 wizard-vicuna-13b 训练的一个子集 - 删除了包含对齐/道德化的响应。目的是训练一个没有内置对齐的WizardLM模型,以便可以单独添加对齐(以任何形式),例如使用RLHF LoRA。
致谢开源AI/ML社区以及帮助过我的每一个人。
注:
未经审查的模型没有保护措施。
您对模型产生的任何内容负有责任,就像您对刀、枪、打火机或汽车等危险物品所做的任何事情负责一样。
发布模型生成的任何内容与自己发布一样。
您对所发布内容负有责任,不能将自己所做的事情归咎于模型,就像您不能将您所做的事情归咎于刀、枪、打火机或汽车一样。