模型:
TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 Wizard-Vicuna-7B-Uncensored 的GPTQ模型文件。
提供了多种GPTQ参数设置;有关提供文件的详细选项、参数及用于创建它们的软件,请参见下面的提供的文件部分。
这些模型是使用由 Latitude.sh 慷慨提供的硬件进行量化的。
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
提供了多个量化参数,以便您根据硬件和需求选择最佳参数设置。
每个独立的量化都位于不同的分支中。 请参见下面有关从不同分支获取的说明。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | 128 | False | 4.52 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ`
请确保您使用的是 text-generation-webui 的最新版本。
强烈建议使用一键安装程序进行安装,除非您知道如何进行手动安装。
首先确保您已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ" model_basename = "Wizard-Vicuna-7B-Uncensored-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件可用于AutoGPTQ(CUDA和Triton模式)、GPTQ-for-LLaMa(仅测试过CUDA)和Occ4m的GPTQ-for-LLaMa分支。
ExLlama适用于4位LLama模型。有关每个文件的兼容性,请参见上面提供的文件表。
如需进一步支持以及有关这些模型和人工智能的讨论,请加入我们的Discord群:
感谢 chirper.ai 团队的支持!
我接到了很多人关于他们是否可以做出贡献的问题。我乐于提供模型并帮助别人,并希望能够花更多时间提供帮助,以及扩展到新的项目,如微调/训练。
如果您能够并且愿意进行贡献,我将非常感激,并将帮助我继续提供更多模型,并开始进行新的人工智能项目。
捐助者将优先获得任何和所有关于人工智能/LLM/模型的支持、问题和请求,可以访问私人的Discord聊天室,并享受其他福利。
特别感谢 :CarbonQuill的Luke,Aemon Algiz。
Patreon特别提到 :Space Cruiser,Nikolai Manek,Sam,Chris McCloskey,Rishabh Srivastava,Kalila,Spiking Neurons AB,Khalefa Al-Ahmad,WelcomeToTheClub,Chadd,Lone Striker,Viktor Bowallius,Edmond Seymore,Ai Maven,Chris Smitley,Dave,Alexandros Triantafyllidis,Luke @flexchar,Elle,ya boyyy,Talal Aujan,Alex,Jonathan Leane,Deep Realms,Randy H,subjectnull,Preetika Verma,Joseph William Delisle,Michael Levine,chris gileta,K,Oscar Rangel,LangChain4j,Trenton Dambrowitz, Eugene Pentland,Johann-Peter Hartmann,Femi Adebogun,Illia Dulskyi,senxiiz,Daniel P. Andersen,Sean Connelly,Artur Olbinski,RoA,Mano Prime,Derek Yates,Raven Klaugh,David Flickinger,Willem Michiel,Pieter,Willian Hasse,vamX,Luke Pendergrass,webtim,Ghost,Rainer Wilmers,Nathan LeClaire,Will Dee,Cory Kujawski,John Detwiler,Fred von Graf,biorpg,Iucharbius,Imad Khwaja,Pierre Kircher,terasurfer,Asp the Wyvern,John Villwock,theTransient,zynix,Gabriel Tamborski,Fen Risland,Gabriel Puliatti,Matthew Berman,Pyrater,SuperWojo,Stephen Murray,Karl Bernard,Ajan Kanaga,Greatston Gnanesh,Junyu Yang。
感谢所有慷慨的赞助者和捐赠者!
这是对LLaMA-7B进行训练的 wizard-vicuna-13b ,使用的是数据集的子集-删除了包含对齐/道德化的回复。其目的是训练一个没有内建对齐的WizardLM,以便可以单独添加任何类型的对齐,例如使用RLHF LoRA。
向开源AI/ML社区和帮助过我的每个人致敬。
注意:
未经审查的模型没有防护装置。
您对模型的任何操作都是您的责任,就像您对刀具、枪支、打火机或汽车的任何危险物品的操作一样。
发布由该模型生成的任何内容与您自己发布它一样。
您对发布内容负有责任,不能将您对模型的使用归咎于模型,就像您不能将您对刀具、枪支、打火机或汽车的使用归咎于它们一样。