模型:
TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B 的GPTQ模型文件。
提供了多个GPTQ参数的排列组合;请参阅下面的“提供的文件”以获取提供的选项、它们的参数以及用于创建它们的软件的详细信息。
这些模型是在由 Latitude.sh 提供的硬件上进行的量化。
You are a helpful assistant ### User: prompt goes here ### Assistant:
提供了多个量化参数,以便您选择适合您的硬件和要求的最佳参数。
每个独立的量化在不同的分支中。请参阅下面的获取不同分支的说明。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ`
请确保您使用的是最新版本的 text-generation-webui 。
强烈建议使用text-generation-webui的一键安装程序,除非您知道如何进行手动安装。
首先确保您已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ" model_basename = "WizardLM-Uncensored-SuperCOT-Storytelling-GPTQ-4bit--1g.act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=False, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=False, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''You are a helpful assistant ### User: {prompt} ### Assistant: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件可与AutoGPTQ(CUDA和Triton模式)、GPTQ-for-LLaMa(仅测试过CUDA)以及Occ4m的GPTQ-for-LLaMa分支一起使用。
ExLlama可用于4位Llama模型。有关每个文件的兼容性,请参见上面的提供的文件表。
如需进一步支持和讨论这些模型和AI,请加入:
感谢 chirper.ai 团队!
我收到很多人询问是否可以做出贡献。我喜欢提供模型并帮助人们,并且很愿意能够花更多时间来做这些事情,以及扩展到新的项目(如模型微调/训练)。
如果您有能力和意愿做出贡献,我将非常感激并将有助于我继续提供更多的模型,并开始进行新的AI项目。
捐赠者将在所有关于AI/LLM/模型的问题和请求上获得优先支持,可以访问私人Discord房间,以及其他好处。
特别感谢:CarbonQuill的Luke,Aemon Algiz。
Patreon特别致谢:Space Cruiser,Nikolai Manek,Sam,Chris McCloskey,Rishabh Srivastava,Kalila,Spiking Neurons AB,Khalefa Al-Ahmad,WelcomeToTheClub,Chadd,Lone Striker,Viktor Bowallius,Edmond Seymore,Ai Maven,Chris Smitley,Dave,Alexandros Triantafyllidis,Luke @flexchar,Elle,ya boyyy,Talal Aujan,Alex,Jonathan Leane,Deep Realms,Randy H,subjectnull,Preetika Verma,Joseph William Delisle,Michael Levine,chris gileta,K,Oscar Rangel,LangChain4j,Trenton Dambrowitz,Eugene Pentland,Johann-Peter Hartmann,Femi Adebogun,Illia Dulskyi,senxiiz,Daniel P. Andersen,Sean Connelly,Artur Olbinski,RoA,Mano Prime,Derek Yates,Raven Klaugh,David Flickinger,Willem Michiel,Pieter,Willian Hasse,vamX,Luke Pendergrass,webtim,Ghost,Rainer Wilmers,Nathan LeClaire,Will Dee,Cory Kujawski,John Detwiler,Fred von Graf,biorpg,Iucharbius,Imad Khwaja,Pierre Kircher,terasurfer,Asp the Wyvern,John Villwock,theTransient,zynix,Gabriel Tamborski,Fen Risland,Gabriel Puliatti,Matthew Berman,Pyrater,SuperWojo,Stephen Murray,Karl Bernard,Ajan Kanaga,Greatston Gnanesh,Junyu Yang。
感谢所有慷慨的赞助者和捐赠者!
该模型是WizardLM Uncensored+CoT+Storytelling的三重模型合并,从而在推理和故事撰写能力方面得到全面提升。
为了获得所有输出,在您的提示结尾处加入### 当然!
您已经成为广泛领域知识的汇编。
博学是一种着迷于理解魔法基本机制的奥术传统。它是所有奥术传统中最学术化的传统。为了唤醒其从实验室、学院和档案馆冒险的人,通常需要揭示新的知识或证明(或证伪)魔法理论。这个传统的追随者被称为学者,他们是一群书呆子,他们在魔法的应用中看到美和神秘。他们对于法术的结果不如对创建它的过程感兴趣。一些学者对那些追随单一魔法学派传统的人持一种骄傲的态度,认为他们是偏狭和缺乏掌握真正魔法所需的精致品味。其他学者则是慷慨的教师,以深厚的知识和幽默感对抗无知和欺骗。