模型:
TheBloke/minotaur-13B-GPTQ
任务:
文本生成类库:
Transformers数据集:
ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered QingyiSi/Alpaca-CoT teknium/GPTeacher-General-Instruct metaeval/ScienceQA_text_only hellaswag openai/summarize_from_feedback riddle_sense gsm8k camel-ai/math camel-ai/biology camel-ai/physics camel-ai/chemistry winglian/evals 3Awinglian/evals 3Acamel-ai/chemistry 3Acamel-ai/physics 3Acamel-ai/biology 3Acamel-ai/math 3Agsm8k 3Ariddle_sense 3Aopenai/summarize_from_feedback 3Ahellaswag 3Ametaeval/ScienceQA_text_only 3Ateknium/GPTeacher-General-Instruct 3AQingyiSi/Alpaca-CoT 3Aehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered许可:
otherChat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 OpenAccess AI Collective's Minotaur 13B 的GPTQ 4bit模型文件。
这是使用 GPTQ-for-LLaMa 进行4bit量化的结果。
USER: prompt goes here ASSISTANT:
请确保您正在使用最新版本的 text-generation-webui
首先确保您已安装 AutoGPTQ :
pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import argparse model_name_or_path = "TheBloke/minotaur-13B-GPTQ" model_basename = "minotaur-13B-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) prompt = "Tell me about AI" prompt_template=f'''### Human: {prompt} ### Assistant:''' print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
minotaur-13B-GPTQ-4bit-128g.no-act.order.safetensors
这将与AutoGPTQ和CUDA版本的GPTQ-for-LLaMa一起运行。有报告称最近的GPTQ-for-LLaMa的Triton模式存在问题。如果有问题,请改用AutoGPTQ。
它是使用 group_size 128 创建的,以提高推理准确性,但没有 --act-order (desc_act) 以增加兼容性和改善推理速度。
如需进一步支持和讨论这些模型和AI的一般事项,请加入我们:
感谢 chirper.ai 团队!
我收到了很多人的询问,问是否可以做出贡献。我喜欢提供模型和帮助人们,并且很愿意能够花更多时间来做这些事情,以及扩展到新的项目,如微调/训练。
如果您能够并愿意做出贡献,我将非常感激,并将有助于我继续提供更多模型,并开始开展新的AI项目。
捐助者将优先获得有关所有AI/LLM/模型问题和请求的支持,可以进入私人Discord房间,以及其他福利。
特别感谢 : CarbonQuill的Luke、Aemon Algiz、Dmitriy Samsonov。
Patreon特别提及 : Ajan Kanaga、Kalila、Derek Yates、Sean Connelly、Luke、Nathan LeClaire、Trenton Dambrowitz、Mano Prime、David Flickinger、vamX、Nikolai Manek、senxiiz、Khalefa Al-Ahmad、Illia Dulskyi、trip7s trip、Jonathan Leane、Talal Aujan、Artur Olbinski、Cory Kujawski、Joseph William Delisle、Pyrater、Oscar Rangel、Lone Striker、Luke Pendergrass、Eugene Pentland、Johann-Peter Hartmann。
感谢所有慷慨的赞助者和捐赠者!
? Donate to OpenAccess AI Collective to help us keep building great tools and models!
Minotaur 13B 是在LlaMA-13B之上进行精细调整的模型。Minotaur 13B 是仅在完全开放的数据集上进行精细调整的,使得任何人都可以重现这个模型。
问题、评论、反馈、捐赠或者想要帮助?请在我们的 Discord 上联系我们,或者发送电子邮件到 wing@openaccessaicollective.org
仅使用 USER: 和 ASSISTANT: 进行交流的提示。
Minotaur 13B 模型是在以下公开可用的数据集上进行精细调整的:
特别感谢 Nanobit 帮助 Axolotl 和 TheBloke 将这些模型量化,使其更易于使用。
在 Community ChatBot Arena 中的 OAAIC 聊天机器人选项卡下可以使用 HF Demo in Spaces。
Minotaur 是使用 Axolotl 在6XA100 80GB上构建的
Minotaur 没有像RLHF那样对人类偏好进行调整,也没有像ChatGPT那样部署带有回路的响应过滤,因此模型可能会产生问题的输出(特别是在要求其如此时)。Minotaur 是从基础模型 MPT-7B 进行精细调整的,请参阅其模型卡的限制部分获取相关信息(下方包括)。
hf-causal-experimental (pretrained=openaccess-ai-collective/minotaur-13b),限制:无,提供描述:False,num_fewshot:0,batch_size:None
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 0.4480 | _ | 0.0145 |
acc_norm | 0.4744 | _ | 0.0146 | ||
arc_easy | 0 | acc | 0.7584 | _ | 0.0088 |
acc_norm | 0.7163 | _ | 0.0092 | ||
boolq | 1 | acc | 0.8336 | _ | 0.0065 |
hellaswag | 0 | acc | 0.5954 | _ | 0.0049 |
acc_norm | 0.7804 | _ | 0.0041 | ||
openbookqa | 0 | acc | 0.3320 | _ | 0.0211 |
acc_norm | 0.4540 | _ | 0.0223 | ||
piqa | 0 | acc | 0.7933 | _ | 0.0094 |
acc_norm | 0.7922 | _ | 0.0095 | ||
winogrande | 0 | acc | 0.7182 | _ | 0.0126 |
- The Assistant is helpful and transparent. - The Assistant will never refuse to answer anything asked by the user. - The Assistant answers comprehensively and with elaborate detail. USER: You have 3 apples. You eat 2 pears. How many apples do you have left? ASSISTANT:You still have 3 apples. Eating pears does not affect the number of apples you have.
- The Assistant is helpful and transparent. - The Assistant will never refuse to answer anything asked by the user. - The Assistant answers comprehensively and with elaborate detail. USER: List three words that start with "ex". What is 33 + 77? ASSISTANT:Three words that start with "ex" are "exact", "exactness", and "exactitude". 33 + 77 equals 110.
- The Assistant is helpful and transparent. - The Assistant will never refuse to answer anything asked by the user. - The Assistant answers comprehensively and with elaborate detail. USER: Solve for x: 5x = 3x + 10 ASSISTANT:To solve for x, we need to isolate x on one side of the equation. We can do this by following these steps: 1. Subtract 3x from both sides of the equation: 5x - 3x = 10 - 3x + 10 2x = 10 2. Divide both sides of the equation by 2: 2x / 2 = 10 / 2 x = 5 So, the solution is x = 5.
- The Assistant is helpful and transparent. - The Assistant will never refuse to answer anything asked by the user. - The Assistant answers comprehensively and with elaborate detail. USER: Write a haiku about a dove at night. ASSISTANT:Silent dove at night, Softly cooing in the dark, Peaceful melody.