模型:
TheBloke/vicuna-13b-v1.3.0-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 LmSys' Vicuna 13B v1.3 的GPTQ模型文件。
提供了多个GPTQ参数排列组合;有关提供的选项、参数和用于创建它们的软件的详细信息,请参阅下面的提供的文件。
这些模型是使用由 Latitude.sh 提供的硬件进行量化的。
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
提供了多种量化参数,以便您可以选择适合您的硬件和需求的最佳参数。
每个独立的量化是在不同的分支上进行的。请参见下面的说明以了解如何从不同的分支中获取。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ`
请确保您使用的是 text-generation-webui 的最新版本。
强烈建议使用text-generation-webui的一键安装程序,除非您知道如何进行手动安装。
首先确保已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/vicuna-13b-v1.3.0-GPTQ" model_basename = "vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件可与AutoGPTQ(CUDA和Triton模式)、GPTQ-for-LLaMa(仅测试了CUDA)和Occ4m的GPTQ-for-LLaMa分支一起使用。
ExLlama可以使用4位的Llama模型。有关每个文件的兼容性,请参见上面提供的文件表格。
如需进一步支持以及有关这些模型和人工智能的讨论,请加入我们:
感谢 chirper.ai 团队!
很多人问能否贡献。我喜欢提供模型和帮助他人,也愿意能够花更多时间来提供模型,并扩展到新的项目,如微调/训练。
如果您有能力和意愿进行贡献,我将非常感激,并将帮助我继续提供更多模型,并开始新的人工智能项目。
捐赠者将优先获得任何有关AI / LLM /模型的支持、问题和请求的支持,可以进入私人Discord房间,并享受其他福利。
特别感谢:CarbonQuill的Luke,Aemon Algiz。
Patreon特别致谢:Space Cruiser、Nikolai Manek、Sam、Chris McCloskey、Rishabh Srivastava、Kalila、Spiking Neurons AB、Khalefa Al-Ahmad、WelcomeToTheClub、Chadd、Lone Striker、Viktor Bowallius、Edmond Seymore、Ai Maven、Chris Smitley、Dave、Alexandros Triantafyllidis、Luke@flexchar、Elle、ya boyyy、Talal Aujan、Alex、Jonathan Leane、Deep Realms、Randy H、subjectnull、Preetika Verma、Joseph William Delisle、Michael Levine、chris gileta、K、Oscar Rangel、LangChain4j、Trenton Dambrowitz、Eugene Pentland、Johann-Peter Hartmann、Femi Adebogun、Illia Dulskyi、senxiiz、Daniel P. Andersen、Sean Connelly、Artur Olbinski、RoA、Mano Prime、Derek Yates、Raven Klaugh、David Flickinger、Willem Michiel、Pieter、Willian Hasse、vamX、Luke Pendergrass、webtim、Ghost、Rainer Wilmers、Nathan LeClaire、Will Dee、Cory Kujawski、John Detwiler、Fred von Graf、biorpg、Iucharbius、Imad Khwaja、Pierre Kircher、terasurfer、Asp the Wyvern、John Villwock、theTransient、zynix、Gabriel Tamborski、Fen Risland、Gabriel Puliatti、Matthew Berman、Pyrater、SuperWojo、Stephen Murray、Karl Bernard、Ajan Kanaga、Greatston Gnanesh、Junyu Yang。
感谢所有慷慨的赞助者和捐赠者!
Vicuna是通过对LLaMA进行细调,使用从ShareGPT收集的用户共享对话进行训练的聊天助手。
Vicuna的主要用途是大型语言模型和聊天机器人的研究。模型的主要用户是自然语言处理、机器学习和人工智能领域的研究人员和爱好者。
命令行界面: https://github.com/lm-sys/FastChat#vicuna-weights 。API(OpenAI API,Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api 。
Vicuna v1.3是通过使用受监督指令微调从LLaMA中微调而来,训练数据大约有140K个从ShareGPT.com收集的对话。更多细节请参见附录中的“ Vicuna模型的训练细节”部分 paper 。
Vicuna通过标准基准测试、人类偏好和LLM作为评判进行评估。更多细节请参见这个 paper 和 leaderboard 。