模型:
TheBloke/vicuna-33B-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
这些文件是用于 LmSys' Vicuna 33B 1.3 的GPTQ模型文件。
提供了多个GPTQ参数组合; 有关提供的选项、它们的参数以及用于创建它们的软件的详细信息,请参见下面的提供的文件。
这些模型是使用由 Latitude.sh 提供的硬件进行量化的。
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
提供了多个量化参数,以便您可以为您的硬件和要求选择最佳参数。
每个单独的量子在不同的分支中。请参见下面的说明,了解如何从不同的分支中进行提取。
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/vicuna-33B-GPTQ`
请确保您使用的是最新版本的 text-generation-webui 。
强烈建议使用text-generation-webui的一键安装程序,除非您知道如何进行手动安装。
首先确保已安装 AutoGPTQ :
GITHUB_ACTIONS=true pip install auto-gptq
然后尝试以下示例代码:
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/vicuna-33B-GPTQ" model_basename = "vicuna-33b-GPTQ-4bit--1g.act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
提供的文件可与AutoGPTQ(CUDA和Triton模式)、GPTQ for LLaMa(仅测试了CUDA)和Occ4m的GPTQ for LLaMa分支配合使用。
ExLlama与4位Llama模型兼容。有关每个文件的兼容性,请参见上面的提供的文件表。
如需进一步支持以及关于这些模型和人工智能的讨论,请加入我们的 Discord:
感谢 chirper.ai 团队!
我有很多人问我是否可以进行贡献。我喜欢提供模型并帮助人们,并希望能够在这方面投入更多的时间,以及扩展到新的项目,如精细调整/训练。
如果您有能力和意愿进行贡献,我将非常感激,并将帮助我继续提供更多的模型,并开始进行新的人工智能项目。
捐赠者将优先获得对任何AI / LLM /模型问题和请求的支持,可以访问私人Discord房间,以及其他福利。
特别感谢:来自CarbonQuill的Luke,Aemon Algiz。
Patreon特别提及:Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
感谢所有慷慨的赞助者和捐助者!
Vicuna是通过在LLaMA上进行细调,使用从ShareGPT收集的用户共享对话进行训练的聊天助手。
Vicuna的主要用途是在大型语言模型和聊天机器人上进行研究。该模型的主要用户群体是自然语言处理、机器学习和人工智能领域的研究人员和爱好者。
命令行界面: https://github.com/lm-sys/FastChat#vicuna-weights 。API(OpenAI API,Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api 。
Vicuna v1.3是通过使用监督学习的细节指导细化LLaMA而得到的。训练数据来自ShareGPT.com收集的约14万个对话。有关更多细节,请参阅本 paper 附录中的“Vicuna模型的培训细节”部分。
Vicuna使用标准基准、人类偏好和LLM作为评判进行评估。有关更多细节,请参阅此 paper 和 leaderboard 。