模型:
TurkuNLP/sbert-uncased-finnish-paraphrase
从FinBERT训练的芬兰语句子BERT模型。使用 the cased model 检索400亿个句子数据集中最相似的句子的演示可以在此找到 here 。
与 HuggingFace documentation 相同。可以通过SentenceTransformer或HuggingFace Transformers实现。
from sentence_transformers import SentenceTransformer sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') embeddings = model.encode(sentences) print(embeddings)
from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
评估结果的出版物正在草拟中。
SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )
在出版物草拟完成之前,请引用 this page 。