英文

ViT5-Base基于vietnews的微观总结模型(无需前缀)

适用于越南语的最先进的预训练基于Transformer的编码器-解码器模型。

如何使用

有关更多详细信息,请查看 our Github repo eval script

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base-vietnews-summarization")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base-vietnews-summarization")
model.cuda()
​
sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam."
sentence = sentence + "</s>"
encoding = tokenizer(sentence, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

引用

@inproceedings{phan-etal-2022-vit5,
    title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
    author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-srw.18",
    pages = "136--142",
}