模型:

ai-forever/sbert_large_nlu_ru

英文

俄语语言的BERT大型模型(不区分大小写)用于句子嵌入。

该模型的描述 in this article 为了获得更好的质量,使用平均令牌嵌入。

用法(HuggingFace模型库)

您可以直接从模型库中使用该模型计算句子嵌入:

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return sum_embeddings / sum_mask



#Sentences we want sentence embeddings for
sentences = ['Привет! Как твои дела?',
             'А правда, что 42 твое любимое число?']

#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru")
model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru")

#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')

#Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

作者