模型:
allenai/PRIMERA-wcep
language: en
license: apache-2.0
HF-version model for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization (ACL 2022).
The original code can be found here . You can find the script and notebook to train/evaluate the model in the original github repo.
| Model | Rouge-1 | Rouge-2 | Rouge-L |
| --- | ----------- |----------- |----------- |
| PRIMERA | 42.0 | 13.6 | 20.8|
| PRIMERA-hf | 41.7 |13.6 | 20.5|
| PRIMERA(finetuned) | 49.9 | 21.1 | 25.9|
| PRIMERA-hf(finetuned) | 49.9 | 20.9 | 25.8|
You can use it by
from transformers import ( AutoTokenizer, LEDConfig, LEDForConditionalGeneration, ) tokenizer = AutoTokenizer.from_pretrained('allenai/PRIMERA') config=LEDConfig.from_pretrained('allenai/PRIMERA') model = LEDForConditionalGeneration.from_pretrained('allenai/PRIMERA')
语言: en
许可证: apache-2.0
PRIMERA的HF版模型:金字塔式基于掩码的句子多文档预训练摘要方法(ACL 2022)。
原始代码可以在 here 中找到。你可以在原始的github仓库中找到用于训练/评估模型的脚本和笔记本。
| 模型 | Rouge-1 | Rouge-2 | Rouge-L |
| --- | ----------- |----------- |----------- |
| PRIMERA | 42.0 | 13.6 | 20.8|
| PRIMERA-hf | 41.7 |13.6 | 20.5|
| PRIMERA(微调后) | 49.9 | 21.1 | 25.9|
| PRIMERA-hf(微调后) | 49.9 | 20.9 | 25.8|
from transformers import ( AutoTokenizer, LEDConfig, LEDForConditionalGeneration, ) tokenizer = AutoTokenizer.from_pretrained('allenai/PRIMERA') config=LEDConfig.from_pretrained('allenai/PRIMERA') model = LEDForConditionalGeneration.from_pretrained('allenai/PRIMERA')可以使用它。