模型:
anton-l/wav2vec2-base-superb-sv
这是 S3PRL's Wav2Vec2 for the SUPERB Speaker Verification task 的移植版本。
基础模型是 wav2vec2-large-lv60 ,它使用在16kHz采样的语音音频上进行预训练。在使用模型时,请确保输入语音也是以16kHz采样的。
更多信息请参考 SUPERB: Speech processing Universal PERformance Benchmark 。
不应将该模型用于故意创建对人们具有敌意或疏远感的环境。
已经进行了大量的研究来探讨语言模型的偏差和公平性问题(参见,例如, Sheng et al. (2021) 和 Bender et al. (2021) )。模型生成的预测可能包含对受保护类别、身份特征以及敏感的社会和职业群体的不良和有害的刻板印象。
用户(直接用户和下游用户)应注意模型的风险、偏差和局限性。需要更多的信息以进一步提供建议。
需要更多信息
需要更多信息
需要更多信息
需要更多信息
需要更多信息
可以使用 Lacoste et al. (2019) 中提出的 Machine Learning Impact calculator 来估计碳排放量。
需要更多信息
需要更多信息
需要更多信息
需要更多信息
BibTeX:
@misc{https://doi.org/10.48550/arxiv.2006.11477, doi = {10.48550/ARXIV.2006.11477}, url = {https://arxiv.org/abs/2006.11477}, author = {Baevski, Alexei and Zhou, Henry and Mohamed, Abdelrahman and Auli, Michael}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations}, publisher = {arXiv}, @misc{https://doi.org/10.48550/arxiv.2105.01051, doi = {10.48550/ARXIV.2105.01051}, url = {https://arxiv.org/abs/2105.01051}, author = {Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y. and Liu, Andy T. and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and Huang, Tzu-Hsien and Tseng, Wei-Cheng and Lee, Ko-tik and Liu, Da-Rong and Huang, Zili and Dong, Shuyan and Li, Shang-Wen and Watanabe, Shinji and Mohamed, Abdelrahman and Lee, Hung-yi}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {SUPERB: Speech processing Universal PERformance Benchmark}, publisher = {arXiv}, year = {2021}, }
需要更多信息
需要更多信息
Anton Lozhkov 与 Ezi Ozoani 以及 Hugging Face 团队合作
需要更多信息
使用下面的代码开始使用模型。
Click to expandfrom transformers import AutoProcessor, AutoModelForAudioXVector processor = AutoProcessor.from_pretrained("anton-l/wav2vec2-base-superb-sv") model = AutoModelForAudioXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv")