模型:
anuragshas/wav2vec2-large-xlsr-53-telugu
使用 OpenSLR SLR66 数据集对Telugu进行了 facebook/wav2vec2-large-xlsr-53 的微调。使用此模型时,请确保您的语音输入采样频率为16kHz。
可以直接使用该模型(无需语言模型),具体如下:
import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2])
import torch import torchaudio from datasets import Dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]' resampler = torchaudio.transforms.Resample(48_000, 16_000) def normalizer(text): # Use your custom normalizer text = text.replace("\\n","\n") text = ' '.join(text.split()) text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE) text = re.sub(r'''%'''," శాతం ", text) text = re.sub(r'''(/|-|_)'''," ", text) text = re.sub("ై","ై", text) text = text.strip() return text def speech_file_to_array_fn(batch): batch["sentence"] = normalizer(batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " " speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:44.98%
OpenSLR Telugu数据集的70%用于训练。
注释的训练分割为 here
注释的测试分割为 here
训练数据准备笔记本可以在此处找到 here
训练笔记本可以在此处找到 here
评估笔记本为 here