预训练的阿拉伯语 BERT 基础语言模型
如果您在工作中使用了此模型,请引用此论文:
@inproceedings{safaya-etal-2020-kuisail, title = "{KUISAIL} at {S}em{E}val-2020 Task 12: {BERT}-{CNN} for Offensive Speech Identification in Social Media", author = "Safaya, Ali and Abdullatif, Moutasem and Yuret, Deniz", booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation", month = dec, year = "2020", address = "Barcelona (online)", publisher = "International Committee for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.semeval-1.271", pages = "2054--2059", }
arabic-bert-base 模型的预训练语料库包含约 82 亿个词:
还包括其他阿拉伯语资源,总共约 95GB 的文本。
关于训练数据的说明:
您可以安装 torch 或 tensorflow 以及 Huggingface 库 transformers ,并像这样初始化模型:
from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic") model = AutoModelForMaskedLM.from_pretrained("asafaya/bert-base-arabic")
有关模型性能或其他问题的详细信息,请参考 Arabic-BERT
感谢 Google 提供免费 TPU 进行训练,并感谢 Huggingface 在其服务器上托管此模型 ?