模型:
audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
该模型接收原始音频信号作为输入,并输出对于唤醒度、支配力和价值的预测结果,数值范围大约在0到1之间。此外,它还提供了最后一个Transformer层的汇集状态。该模型是通过在 MSP-Podcast 上微调 Wav2Vec2-Large-Robust 来创建的(版本为v1.7)。在微调之前,将模型从24个Transformer层剪枝至12个。可以从 doi:10.5281/zenodo.6221127 获取模型的 ONNX 版本。更多详细信息请参阅相关的 paper 和 tutorial 。
import numpy as np import torch import torch.nn as nn from transformers import Wav2Vec2Processor from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) class RegressionHead(nn.Module): r"""Classification head.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.final_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class EmotionModel(Wav2Vec2PreTrainedModel): r"""Speech emotion classifier.""" def __init__(self, config): super().__init__(config) self.config = config self.wav2vec2 = Wav2Vec2Model(config) self.classifier = RegressionHead(config) self.init_weights() def forward( self, input_values, ): outputs = self.wav2vec2(input_values) hidden_states = outputs[0] hidden_states = torch.mean(hidden_states, dim=1) logits = self.classifier(hidden_states) return hidden_states, logits # load model from hub device = 'cpu' model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' processor = Wav2Vec2Processor.from_pretrained(model_name) model = EmotionModel.from_pretrained(model_name) # dummy signal sampling_rate = 16000 signal = np.zeros((1, sampling_rate), dtype=np.float32) def process_func( x: np.ndarray, sampling_rate: int, embeddings: bool = False, ) -> np.ndarray: r"""Predict emotions or extract embeddings from raw audio signal.""" # run through processor to normalize signal # always returns a batch, so we just get the first entry # then we put it on the device y = processor(x, sampling_rate=sampling_rate) y = y['input_values'][0] y = torch.from_numpy(y).to(device) # run through model with torch.no_grad(): y = model(y)[0 if embeddings else 1] # convert to numpy y = y.detach().cpu().numpy() return y process_func(signal, sampling_rate) # Arousal dominance valence # [[0.5460759 0.6062269 0.4043165]] process_func(signal, sampling_rate, embeddings=True) # Pooled hidden states of last transformer layer # [[-0.00752167 0.0065819 -0.00746339 ... 0.00663631 0.00848747 # 0.00599209]]