英文

Baichuan-13B-Base

介绍

Baichuan-13B-Base是Baichuan-13B系列模型中的预训练版本,经过对齐后的模型可见 Baichuan-13B-Chat

Baichuan-13B 是由百川智能继 Baichuan-7B 之后开发的包含130亿参数的开源可商用的大规模语言模型,在权威的中文和英文benchmark上均取得同尺寸最好的效果。本次发布包含有预训练( Baichuan-13B-Base )和对齐( Baichuan-13B-Chat )两个版本。Baichuan-13B有如下几个特点:

  • 更大尺寸、更多数据:Baichuan-13B在 Baichuan-7B 的基础上进一步扩大参数量到130亿,并且在高质量的语料上训练了1.4万亿tokens,超过LLaMA-13B 40%,是当前开源13B尺寸下训练数据量最多的模型。支持中英双语,使用ALiBi位置编码,上下文窗口长度为4096。
  • 同时开源预训练和对齐模型:预训练模型是适用开发者的“基座”,而广大普通用户对有对话功能的对齐模型具有更强的需求。因此本次开源我们同时发布了对齐模型(Baichuan-13B-Chat),具有很强的对话能力,开箱即用,几行代码即可简单的部署。
  • 更高效的推理:为了支持更广大用户的使用,我们本次同时开源了int8和int4的量化版本,相对非量化版本在几乎没有效果损失的情况下大大降低了部署的机器资源门槛,可以部署在如Nvidia 3090这样的消费级显卡上。
  • 开源免费可商用:Baichuan-13B不仅对学术研究完全开放,开发者也仅需邮件申请并获得官方商用许可后,即可以免费商用。
  • Baichuan-13B-Base是Baichuan-13B系列模型中的预训练版本,经过对齐后的模型可见 Baichuan-13B-Chat
  • Baichuan-13B 是一个开源的、可商用的大规模语言模型,由百川智能开发,拥有130亿参数。它在与自身尺寸相同的标准中文和英文基准测试中取得了最佳性能。此次发布包括两个版本:预训练(Baichuan-13B-Base)和对齐(Baichuan-13B-Chat)。Baichuan-13B具有以下特点:

  • 更大尺寸、更多数据:Baichuan-13B在 Baichuan-7B 的基础上进一步扩大参数规模至130亿,并在高质量的语料库上进行了1.4万亿次标记的训练,超过LLaMA-13B 40%。它是目前开源的13B模型中训练数据量最大的模型。支持中文和英文,使用ALiBi位置编码,上下文窗口长度为4096。
  • 同时开源预训练和对齐模型:预训练模型是面向开发者的“基础”,而普通公众更需要具有对话功能的对齐模型。因此,在这次开源发布中,我们还同时发布了对齐模型(Baichuan-13B-Chat),其具备强大的对话能力,开箱即用,只需几行代码即可轻松部署。
  • 更高效的推理:为了支持更广泛的用户使用,我们还开源了INT8和INT4量化版本。这些模型几乎不损失性能,大大降低了部署所需的机器资源门槛,可以在像Nvidia 3090这样的消费级GPU上部署。
  • 开源、免费和可商用:Baichuan-13B不仅完全对学术研究开放,开发者还可以通过邮件申请并获得官方商业许可后免费进行商业使用。
  • 模型详情

    模型描述

    • 开发者:百川智能(Baichuan Intelligent Technology)

    • 电子邮件:opensource@baichuan-inc.com

    • 语言(NLP):中文/英文

    • 许可证:【Baichuan-13B模型社区许可证】(ZH | EN)

      商业用途:请通过电子邮件联系申请书面授权。(联系方式见上方电子邮件)

    模型结构

    整体模型基于Baichuan-7B,为了获得更好的推理性能,Baichuan-13B使用了ALiBi线性偏置技术,与旋转嵌入相比,计算量更小,推理性能显著提高;与标准的LLaMA-13B相比,生成2000个tokens的平均推理速度(tokens/s)实测提升31.6%:

    Model tokens/s
    LLaMA-13B 19.4
    Baichuan-13B 25.4

    具体参数和见下表

    模型名称 隐含层维度 层数 头数 词表大小 总参数量 训练数据(tokens) 位置编码 最大长度
    Baichuan-7B 4,096 32 32 64,000 7,000,559,616 1.2万亿 12310321 4,096
    Baichuan-13B 5,120 40 40 64,000 13,264,901,120 1.4万亿 12311321 4,096

    The overall model is based on Baichuan-7B. In order to achieve better inference performance, Baichuan-13B uses ALiBi linear bias technology, which has a smaller computational load compared to Rotary Embedding, and significantly improves inference performance. Compared with the standard LLaMA-13B, the average inference speed (tokens/s) for generating 2000 tokens has been tested to increase by 31.6%:

    Model tokens/s
    LLaMA-13B 19.4
    Baichuan-13B 25.4

    The specific parameters are as follows:

    Model Name Hidden Size Num Layers Num Attention Heads Vocab Size Total Params Training Dats(tokens) Position Embedding Max Length
    Baichuan-7B 4,096 32 32 64,000 7,000,559,616 1.2万亿 12310321 4,096
    Baichuan-13B 5,120 40 40 64,000 13,264,901,120 1.4万亿 12311321 4,096

    免责声明

    我们在此声明,我们的开发团队并未基于Baichuan-13B模型开发任何应用,无论是在iOS、Android、网页或任何其他平台。我们强烈呼吁所有使用者,不要利用Baichuan-13B模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将Baichuan-13B模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。

    我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用Baichuan-13B开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。

    We hereby declare that our development team has not developed any applications based on the Baichuan-13B model, whether on iOS, Android, the web, or any other platform. We strongly urge all users not to use the Baichuan-13B model for any activities that harm national social security or are illegal. In addition, we also ask users not to use the Baichuan-13B model for internet services that have not undergone appropriate security review and filing. We hope that all users will adhere to this principle to ensure that technological development takes place in a regulated and legal environment.

    We have done our utmost to ensure the compliance of the data used in the model training process. However, despite our great efforts, due to the complexity of the model and data, there may still be some unforeseen issues. Therefore, we will not take any responsibility for any issues arising from the use of the Baichuan-13B open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, misused, disseminated, or improperly exploited.

    训练详情

    训练具体设置参见 Baichuan-13B

    For specific training settings, please refer to Baichuan-13B .

    测评结果

    C-Eval

    Model 5-shot STEM Social Sciences Humanities Others Average
    Baichuan-7B 38.2 52.0 46.2 39.3 42.8
    Chinese-Alpaca-Plus-13B 35.2 45.6 40.0 38.2 38.8
    Vicuna-13B 30.5 38.2 32.5 32.5 32.8
    Chinese-LLaMA-Plus-13B 30.3 38.0 32.9 29.1 32.1
    Ziya-LLaMA-13B-Pretrain 27.6 34.4 32.0 28.6 30.0
    LLaMA-13B 27.0 33.6 27.7 27.6 28.5
    moss-moon-003-base (16B) 27.0 29.1 27.2 26.9 27.4
    Baichuan-13B-Base 45.9 63.5 57.2 49.3 52.4
    Baichuan-13B-Chat 43.7 64.6 56.2 49.2 51.5

    MMLU

    Model 5-shot STEM Social Sciences Humanities Others Average
    Vicuna-13B 40.4 60.5 49.5 58.4 52.0
    LLaMA-13B 36.1 53.0 44.0 52.8 46.3
    Chinese-Alpaca-Plus-13B 36.9 48.9 40.5 50.5 43.9
    Ziya-LLaMA-13B-Pretrain 35.6 47.6 40.1 49.4 42.9
    Baichuan-7B 35.6 48.9 38.4 48.1 42.3
    Chinese-LLaMA-Plus-13B 33.1 42.8 37.0 44.6 39.2
    moss-moon-003-base (16B) 22.4 22.8 24.2 24.4 23.6
    Baichuan-13B-Base 41.6 60.9 47.4 58.5 51.6
    Baichuan-13B-Chat 40.9 60.9 48.8 59.0 52.1

    说明:我们采用了MMLU官方的 评测方案

    CMMLU

    Model 5-shot STEM Humanities Social Sciences Others China Specific Average
    Baichuan-7B 34.4 47.5 47.6 46.6 44.3 44.0
    Vicuna-13B 31.8 36.2 37.6 39.5 34.3 36.3
    Chinese-Alpaca-Plus-13B 29.8 33.4 33.2 37.9 32.1 33.4
    Chinese-LLaMA-Plus-13B 28.1 33.1 35.4 35.1 33.5 33.0
    Ziya-LLaMA-13B-Pretrain 29.0 30.7 33.8 34.4 31.9 32.1
    LLaMA-13B 29.2 30.8 31.6 33.0 30.5 31.2
    moss-moon-003-base (16B) 27.2 30.4 28.8 32.6 28.7 29.6
    Baichuan-13B-Base 41.7 61.1 59.8 59.0 56.4 55.3
    Baichuan-13B-Chat 42.8 62.6 59.7 59.0 56.1 55.8

    说明:CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们采用了其官方的 评测方案

    微信群组