模型:
biodatlab/whisper-th-medium-combined
此模型是在经过增强的版本的mozilla-foundation/common_voice_13_0 th、google/fleurs和精选数据集上进行微调的版本。它在 common-voice-11 评估集上实现了以下结果(未更新):
使用 huggingface 的 transformers 库调用该模型的方法如下:
from transformers import pipeline MODEL_NAME = "biodatlab/whisper-medium-th-combined" # specify the model name lang = "th" # change to Thai langauge device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids( language=lang, task="transcribe" ) text = pipe("audio.mp3")["text"] # give audio mp3 and transcribe text
需要更多信息
需要更多信息
训练时使用了以下超参数:
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0679 | 2.09 | 5000 | 0.1475 | 13.03 |
使用 BibTex 引用:
@misc {thonburian_whisper_med, author = { Atirut Boribalburephan, Zaw Htet Aung, Knot Pipatsrisawat, Titipat Achakulvisut }, title = { Thonburian Whisper: A fine-tuned Whisper model for Thai automatic speech recognition }, year = 2022, url = { https://huggingface.co/biodatlab/whisper-th-medium-combined }, doi = { 10.57967/hf/0226 }, publisher = { Hugging Face } }