模型:
biodatlab/whisper-th-medium-combined
This model is a fine-tuned version of openai/whisper-medium on augmented versions of the mozilla-foundation/common_voice_13_0 th, google/fleurs, and curated datasets. It achieves the following results (NOT-UP-TO-DATE) on the common-voice-11 evaluation set:
Use the model with huggingface's transformers as follows:
from transformers import pipeline MODEL_NAME = "biodatlab/whisper-medium-th-combined" # specify the model name lang = "th" # change to Thai langauge device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids( language=lang, task="transcribe" ) text = pipe("audio.mp3")["text"] # give audio mp3 and transcribe text
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0679 | 2.09 | 5000 | 0.1475 | 13.03 |
Cite using Bibtex:
@misc {thonburian_whisper_med, author = { Atirut Boribalburephan, Zaw Htet Aung, Knot Pipatsrisawat, Titipat Achakulvisut }, title = { Thonburian Whisper: A fine-tuned Whisper model for Thai automatic speech recognition }, year = 2022, url = { https://huggingface.co/biodatlab/whisper-th-medium-combined }, doi = { 10.57967/hf/0226 }, publisher = { Hugging Face } }